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ABSTRACT

A rational methodology for local area population

projection and water and sewer service area prediction is developed.

The projection model consists of a stochastic simulation of inter-

regional population growth and a finite-difference solution to a

non-linear differential equation describing spatial variations in

urban population densities. The projection model output is

designed as input to optimization algorithms for regional water

supply and waste treatment facilities. The components of demographic

change are modeled as autoregressive stochastic processes, and a

response surface algorithm is developed to decompose net migration

rates into in- and outmigration rates. Service area prediction is

based on a computerized evaluation of the distance-density relations

at the existing service area periphery. Comparison of results to

preliminary 1970 census figures indicates a superior prediction

performance over traditional methods of population projection as

practiced by consulting engineers and planners.
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*
NOTATION

a = Intercept term of linear regression models

b. = Number of births in period t, region i [M]

3. = birth rate, region i [T]"

B = diagonal matrix of birth rates

d. = number of deaths in period t, region i [M]

6.' ~ death rate, region i [T]

A = diagonal matrix of death rates

e, = (k x 1) unit vector

f = amplification factor

r = interregional growth operator

Y- = i-th row of the interregional growth operator r

2
h = population density [M]/[L]

2h = extrapolated population density at the urban centre, [M]/[L]

h . .= population density at cartesian coordinates i,j at time t

I = identity matrix

K = permeability, x-direction [L] /[T][M]
A

K = permeability, y-direction [L] /[T][M]

* 2
K = intrinsic permeability [L] /[M]

fc. (k) = number of net migrants in the k-year period commencing at
time t, region i [M]

X. = net migration rate, region i

m. = number of total inmigrants to region i, period t [M]

j. = inmigration rate, region i

(*) [M1»[L]»[T] represent physical dimensions as used in Chapter VIII
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y. . = place specific migration rate from region i to region j,

M = matrix of place-specific migration rates y..

N = sample size

n = length of intercensal interval, years [T]

o. = number of outmigrants, period t, region i [M]

to. = outmigration rate, region i [T]'1

ft = diagonal matrix of outmigration rates w.

P. .= fraction of individuals in j-th age group, region i [M]

q. = growth increment, period t, region i [M]

$. = growth rate, period t, region i

2
41 = mobility factor [L] /[T]

$ = matrix of survival ratios

p = first order serial correlation coefficient

R = matrix of first-order serial correlation coefficients

p.( ) = first-order serial correlation coefficient of the random
1 variable ( ), region i

R = ratio of base populations

r = distance to the city (well) center [L]

r = well radius (=radius of CBD) [L]
. W

r = equilibrium radius [L]c

R = population projection range, period t

R = relative population projection range, period t

ŝ.( ) = sample standard deviation of the random variable ( ),
region i



XIV

u = migration velocity, x-direction [L]/[T] (Chapter VIII)

v = migration velocity, y-direction [Lj/[T] (Chapter VIII)

u = vector of error terms, period t

v = random normal deviate

V = matrix of random normal deviates

w. = population of region i, period t

w = vector of populations at time t

W = interregional population record

W = block-diagonal matrix of blocks WK

x. = population projection for region i, period t

X..= j-th explanatory variable, region i

y. = lagged j-th column of the interregional population record W

z. = segment of population not susceptible to migration, region i

A = estimate of A

|A| = determinant of the square matrix A

||A||= norm of the matrix A

Cond(A) = condition number of the matrix A

<8> = element by element multiplication of matrices

©= element by element division of matrices

2 2C ̂  N(y,o ) = C is distributed normally with mean y and variance a

[L] = dimension of length

[T] = dimension of time

[M] = dimension of mass (individuals)
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CBD = Central Business District

CC = Central city
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E{ } = expectation of the random variable { }

LPVRPC = Lower Pioneer Valley Regional Planning Commission,

LPVRPD = Lower Pioneer Valley Regional Planning District

LS = least squares

MAD = minimum absolute deviations

plim = probability limit

RND = random normal deviate

r.v. = random variable

SEA = State Economic Area

SF = single family (housing)

SMSA = Standard Metropolitan Statistical Area

ULS = unrestricted least squares

Var{ } = variance of the random variable { }



C H A P T E R I

THE PROBLEM STATEMENT

Introduction

In recent years, the regional approach to waste management

has received increasing attention from economists, location theorists,

students of government, industrial engineers and applied mathe-

maticians as well as from the environmental engineering profession

itself. This has followed recognition of the scale economies of large

regional treatment plant facilities over several independently operated

small plants and the intangible benefits of a unified regional waste

treatment authority, both of not inconsiderable importance in view of

contemporaneous pressures to establish efficient pollution control

procedures and public concern over rising governmental expenditures.

As the societal goal of environmental quality assumes major political

significance, reflected in the legislation of upgraded water and air

quality standards and concomitant jurisdictional enforcement powers,

so will waste treatment facilities, and their operation, become ever

more complex. Universal secondary treatment of municipal wastes can

be anticipated within the next decade under the powers of the

proliferation of State and Federal Environmental Qiality Acts.

Advanced waste treatment will become necessary to meet effluent

standards imposed on large population agglomerations where the sheer

magnitude of municipal wastes demands a superior contaminant removal



performance than elsewhere necessary, in addition to situations

where water reclamation for industrial and municipal re-use is

envisaged. Recent wotk by Smith (2) has again underscored the economies

of scale that exist for the capital costs of primary, secondary and

tertiary treatment facilities, and the complexities of efficient operation

and maintenance of secondary and tertiary treatment clearly require large

regional plants of sufficient size to support qualified operating

personnel. A further argument for regionalisation that has to date

recieved insufficient attention is the superior reliability of population

forecasts for larger regions. This point will be elaborated in some

detail in Chapter VII.

Such a large waste-treatment complex may be viewed as a

system of subsystems comprising the elemental sewage sources, collection,

regional interceptor, storage, treatment plant and recieving stream sub-

systems as shown in Figure 1. Each of these subsystems may itself

consist of a number of subsystems. For example, the treatment plant

subsystem consists of a number of interdependent biological and physical

processes.

A convenient conceptual framework applicable to such a scheme

centers around the notion of the "black box". For the purposes

See e.g. Lynam et al. (1), who report on the experiments
at Metro Chicago to evaluate advanced treatment methods for the
purpose of meeting the intended upgraded effluent standards of the
next decade.



REGIONAL WASTE MANAGEMENT SYSTEM

SEWAGE SOURCES REGIONAL INTERCEPTORS TREATMENT PLANT STREAM

PRIMARY SECONDARY SLUDGE HANDLING

Figure 1 : The hierarchy of systems

of this study, this black box will comprise the regional interceptors,

storage and treatment facilities and that section of the receiving

stream utilised for waste assimilative purposes as illustrated in

Figure 2. These subsystems are generally of a physical-engineering

nature, amenable to mathematical modeling and optimization using

modern tools of operations research. Considerable progress has been

attained in the last decade in the quantitative formulation of the

2
component systems of the treatment plant subsystem.

For example, the trickling filter has been modeled by
Swilley and Atkinson (3) and Caller and Gotaas (4), the activated
sludge process and its modifications by Grieves et al. (5), and
Erikson and Fan (6), the digester by Pfeffer (7), and sludge
drying by Nebiker et al. (8), and Meier et al. (9).
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Figure 2 : The "black box" concept

Models of the treatment plant subsystem itself have made use
3

of simulation and linear programming techniques and on-going research

is attempting the necessary developments, refinements and extensions

necessary for regional optimization purposes.

Specification of the black box output has attracted the

particular attention of economists, concerned with the economic efficiency

considerations resulting from the imposition of stream standards and the

necessary waste treatment costs incurred in their successful attainment.

For example Montgomery and Lynn 0-0)* Shin and DePilippi (11),
and Lynn et al.(12)

Ŝee e.g. Giglio et al.(13) and Adrian (14)
In the wake of Kneesefs work in the early sixties have

followed numerous studies conserned with regional water quality models
(see e.g. Revelle et al. (15), Liebman and Lynn (16), and Roger and
Gemmell (17)).



However, consideration of the input to the black box has to

date been neglected, and it is to this problem that this study will be

directed. Indeed, only one paper has been encountered in the sanitary

engineering literature of the last decade that has focused attention

on population projection methodology and it was essentially a review.

The inputs to this black box are the "sewage sources". These

are the locations at which wastewater is generated, and may originate

from participant communities, residential developments, industrial zones

etc. Associated with each source is a set of pertinent quality and

quantity characteristics, denoted "stream vectors". Since the

optimization step includes consideration of the spatial location of

constituent subsystems, it is evident that such sewage sources must be

specified in space as well as time. Given, for example, the assertion

that the quantity of domestic sewage is primarily a function of

population size, then the intra-regional population distribution assumes

co-equal importance to the overall total regional population. This

follows directly from the necessity of efficient sizing and location of

regional interceptors.

It becomes evident that in the specification of the system

input, the dominance of physical-engineering considerations is super-

seded by the socio-economic forces that govern population growth and

6McJunkin (18)
following the notation of Smith C19)



distribution, industrial location and political organisation. Indeed,

of immediate concern is the selection of the planning region itself.

On what basis should a particular community be included or excluded

from the black box optimization? In view of the infinity of permutations

of regional associations, some prior limitation is essential if the

black box is to be kept to within reasonable dimensions.

Just as the optimization step requires a successful

synthesis between the environmental engineering disciplines and operations

research, so will an adequate treatment of the system input demand a

synthesis of the environmental and social sciences, and, in particular,

demography and the regional sciences. It is thus the purpose of this

study to attempt such an interdisciplinary synthesis for the specific

requirements of regional waste management planning models, and to

develop a methodology for the formualtion of the input to regional

optimization procedures.



The Problem Statement

Delineation of the problem. Specification of the black-box

input falls into three logical phases. The first is to estimate the

anticipated future population of the region under consideration.

The second is an evaluation of the extent of the future sewer service

area. In view of the dependence of domestic sewage flows on

residential water consumption, a simultaneous consideration of the

water service area will be necessary. The third step is the

transformation of the serviced population into the desired stream

vector - the expected flows, and quality factors.

This study is restricted to the first two of the afore-

mentioned steps in view of the interrelationships that exist between

the spatial location of residential developments and the availability

of municipal services,of which access to the sewage collection system

and public water supply are unquestionably dominant as locational

determinants.

A further restriction is the focus on residential location.

Location of central place services and employment are not considered

explicitly, and the resulting projections are designed for the

purpose o£ providing a rational basis for estimating domestic sewage

flows and water demands, to the exclusion of commercial-industrial

wastewaters.



Principal focus of the study. The most serious shortcomings

of existing techniques available to develop the required stream

vectors are the deterministic nature of local area population projection

methods and the inherent subjectivities of estimating a future service

area. Modern capacity-expansion optimization algorithms are not

restricted to the single time period deterministic demand functions

traditional to the design of treatment facilities by the environmental

engineering profession. Recent interest in optimal time-capacity

expansion of wastewater treatment systems (Thomas (20), Rachford et al.

(21) and Scarato (22)), although presently restricted to linearly

increasing demand functions, point clearly to future developments.

Results for more realistic demand patterns (geometric and arbitrary non-

decreasing) are, however, readily available in the operations research
Q

literature. The dependence of the timing of capacity expansions on

the interest rate, time horizon and demand variability has there long

been established.

The economies of scale of regional treatment facilities are

offset by the cost of regional interceptors, thus limiting potential

regional facilities to relatively small areas. Unfortunately the

sophisticated tools of mathematical demography available for the

analysis of closed population systems are unsuited to local area

population projections. Consequently, local area projections have

•gained notoriety as being extremely unreliable, in that the relatively

primitive deterministic extrapolations that are still in widespread

8See for example Veinott and Manne (23) and Srinivasan (24)



use by both the planning and engineering professions yield quite

inaccurate results. The detailed review of present practice of the

following section will indicate the extent to which such methods still

persist in the professions involved in the realities of the regional

planning process.

Review of Present Population
Projection Practice

Local area projections by planning consultants. The population

projections prepared for the Lower Pioneer Valley Regional Planning

Commission (LPVRPC) by their planning consultants fully reflect the

aforementioned inadequacies of the existing projection methodology for

small areas. Two methods were employed; straight line projections,

based on a least squares fit over the interval 1910-1960 or 1940-1960,

and the step-down method. For the total study area, the high projection
9

was derived from the step-down method and the low from the straight-

line projection. Community projections also consisted of high and low

estimates, again using the above methods, modified to some extent by

judgements based on evaluation of local conditions. It would appear

that the use of two different techniques to obtain high and low

projections contradicts fundamental concepts of logical consistency.

Furthermore, although the variability of a projection is recognized,

there is no attempt to quantify this variability objectively. The best

that can be said for such projections is that they are presented with

9 iFor a description of the most—encountered current population
projection techniques see Appendix D.
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due warning as to their use, and that much effort is expended in

arriving at a set of presentable numbers.

Examination of projections by other planning consultants

indicates that the practice of using two different deterministic methods

to derive high and low estimates is widespread. Indeed, it will be

shown in Chapter VII that the prediction performance of these deterministic

projections are consistently inferior to their stochastic counterparts

that will be developed in the course of this study.

Population projection by environmental engineers. Some

indication of the state of the art of population projection in the

environmental engineering field is the treatment of the topic in the latest

texts. The new edition of "Water and Wastewater Engineering" by Fair,

Geyer and Okun (25) includes extensive chapters on optimization techniques

and stochastic hydrology, yet devotes only four of approximately 1,000

pages to population projections, and quotes but two references dating to

1940 and 1952. Mathematical curve fitting and subjective graphical

extrapolation are the only methods elaborated. The authors conclude:

"Plots of population against time generally exhibit trends
that can be carried forward to the end of design periods.
The eye of a skilled interpreter of population growth •
will guide his hand to extend population curves into what
appear to be reasonable forecasts without committing the
forecaster to a particular mathematical system. For this
reason, graphical forecasts are much used by engineers."
(op.cit.p.5-9)

For example, the Pittsfield Urbanized Area Transportation
study used the cohort survival method as the "high", and the step-
down method for the "low" projection. The population projections for
the Franklin County Regional Planning Commission utilized the cohort-
survival method for the low and an employment forecast related method
for the high projection.



11

Such is the nature of the offerings on population

projection in a modern text, widely acknowledged as an authorotative

work. Figures 3 and 4 demonstrate how such forecasts turn out in

practice. Both are totally unrealistic, upon which considerable

expenditure for capacity expansion is justified, and both are quite

typical of projections by engineering consultants. They characterize a

deeply ingrained design philosophy that has persited to the present day

in the absence of a demonstrably superior alternative.

Relevancy of the Study

From the foregoing review it is evident that there has been

a lack of response from the academic community to the needs of the real

world. The professions cannot be indicted for a continued reliance

on poor techniques while superior alternatives are still lacking.

With rapidly increasing public monies expended on environmental pollution

control to attain goals that must compete with the complex socio-

economic problems of the domestic sector for priority, a re-evaluation

of the projection basis upon which treatment facilities are planned and

constructed is urgently required. Recent research efforts have been

directed principally toward the black box itself, neglecting the input

upon which the results must rest. Specification of design capacity is

unquestionably the single most important factor in treatment plant design,

a specification that has traditionally rested on a projection methodology

of questionable objectivity.
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Figure 4 : Population projection by an engineering consultant for determination of sewage
treatment plant design capacity for a small industrial town in Western Massachusetts.
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This study will therefore attempt to develop new approaches

to a hitherto neglected field, relevant both in terms of the current

research effort toward quantitative analysis of environmental problems

and in terms of immediate priorities for the planning professions.
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C H A P T E R ' I I

APPROACHES TO PROBLEM RESOLUTION

The present availability of time-sharing computer facilities

no longer precludes practical utilization of computerized mathematical

techniques by the consulting engineer. The models to be developed in

this study thus rest heavily on numerical methods and stochastic

simulation techniques that require computer facilities for implementation.

The Lower Pioneer Valley Regional Planning District (that includes the

Springfield-Holyoke-Chicopee urbanized area is used throughout for sample

calculations,

Data base. Sample calculations to illustrate projection

models and their soluation algorithms utilize 1965 as a base year, and

their short-term performance is measured against preliminary 1970 census

figures available at the time of writing. The analysis of migration rates

utilizes 1950-1960 census data; the relationships established need be

updated on availability of detailed 1970 census results. Although this

is unfortunate from the point of view of presenting definitive projections

for the study region, it is unavoidable for any project conducted toward

the end of an intercensal interval. The reader is reminded that the prime

purpose of this study is the generalized development of new techniques

rather than a presentation of complete results for a specific region
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Outline of the Study

Population projection. Attention is first focused on

migration, the major component of local area population change.

The service area prediction model requires that net migration be

decomposed into in- and outmigration streams, data that is not

generally available. A model developed by Rogers (26) is conceptually

attractive for this decomposition, but computational experience to date

indicates poor numerical performance as measured against prior know-

ledge of migration behaviour. Chapter III will introduce this model

and analyze the reasons for its unsatisfactory performance. The

concept of migration rates as serially dependent random variables is

introduced and developed in Chapter IV. Chapter V develops a numerical

solution algorithm for the migration decomposition that utilizes a

response surface minimization to evaluate objectively the optimum

degree of data smoothing required to eliminate the errors of inter-

censal population estimation.

Births and deaths are modeled as autoregressive stochastic

processes in Chapter VI and Chapter VII integrates the components of

demographic change into a viable projection technique. A stochastic

simulation model provides the necessary mathematical-statistical

framework. Output is in the form of a probability distribution, from

which the projection uncertainties can be objectively evaluated.
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Service area prediction. On the basis of a physical analogy

to a well-known model of a recharge well, a non-linear differential

equation is derived to describe spatial variations in residential

population densities, utilizing a finite difference algorithm for

solution (Chapter VIII). The resultant distance-density profiles are

shown to be consistent with empirical formulae developed by urban

geographers. Using the output of the population projection as a

driving force, the model will simulate the future spatial distribution

of residential location. Chapter IX considers the criteria for

expansion of the water and sewer service areas and presents the

computerized computational model that predicts the requisite serviced

populations.



18

C H A P T E R I I I

THE ROGERS MODEL FOR THE ESTIMATION
OF INTERREGIONAL MIGRATION RATES

Review

Notation. Except where explicitly noted, lower case Greek

letters will be used for rates (birth, death, migration rates etc.),

and lower case letters for events (number of births, deaths, migrations).

Subscripted lower case letters denote vectors, and double subscripted

lower case letters denote scalars.

Upper case letters will represent matrices. The dimensions of

matrices and matrix equations are indicated by the notation (i x j) immed-

iately below the corresponding matrix expression. The usual rules of

matrix algebra apply throughout. However, element by element multiplic-

ation of matrices will be denoted by the symbol ® and element by element

division by © . The superscript T indicates matrix transposition, and

the superscript -1 indicates inversion. Exponentiation is represented by

the notation exp( ) or by a bracketed superscript.

The components-of-change model. The aforementioned notational

rules are best introduced by consideration of the basic components-of-

change model of population dynamics, namely

t+1 t , t t ,t tw. = w. + b. + m. - d. - o.i 1 1 1 1 1

where tw. = population of region i at time t

b* = number of births in region i between time t and t+1

d. - number of deaths in region i between time t and t+1

m. = number of inmigrants to region i between t and t+1

o. = number of outmigrants from region i between t and t+1
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Expressing Eq.[ 3.1 ] in terms of crude rates

= wt Cl + 6.. - 6.. + y.. - u..) ..... [ 3.2 ]i i *- 11 11 11 n'~ L J

where p.. = crude birth rate for region i

6 . . = crude death rate for region i

y. . = crude inmigration rate for region i

UK . = crude outmigration rate for region i

Eq.[ 3.2 ] can be written as

t+1 tw = w. Y ............... -i '11 L j

where y. . is defined as the growth multiplier.

Interregional formulation. Consider now the application

of the components of change formulation of population growth to an inter-

regional population system of k regions, namely

wt+1 = [ I + B - A + M - f i ] w 1 [ 3 . 4 ]

(k x 1) (k x k) (k x k)(k x k) Ck x k) (k x k) (k x 1)

wt+1 = r wt

(k x 1) Ck x k)(k x 1) .......... [ 3.5 ]

where
w = (k x 1) vector whose i-th element denotes the population

of region i at time t

I = identity matrix

B, A, ft = diagonal matrices of elements 3-., &•-, to..
respectively

M = matrix of place specific migration rates.

r = interregional growth operator
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The elements of T are denoted as

v. . for i = j!

y_ for i ̂  j

and from Eq.[ 3.5 ] it is clear that

Y. . = 1 + $.. - <S. .- 10..'11 11 11 11

\i. . = migration rate from region j to region i

M = r for all i ̂

Also we may define an (n x k) matrix W, the k-regional population record

over an n-year time interval, such that

W =

(n x k)

w. w, w.

t+1w. t+1
'2 w,t+1

t+n-1 t+n-1
Wl W2

w.t+n-1

and an (n x 1) vector y. that represents the j-th column of W lagged by

one time period. Thus

wt+12

t+2w.

t+n
'2

The difference between y., representing the lagged j-th column of W,

and w , representing the t-th row of W, should be fully noted.
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The Rogers Model. Rogers C26) proposed a method for

estimating the interregional growth operator from the interregional

population distribution by application of least squares to the relation

y± = w y± [ 3.6 ]

where Y- is the transpose of the i-th row of F, and for which the

least squares estimate of . is given by

YI = (Ŵ )"
1 WT y. [ 3.7 ]

which is repeated for all k rows to yield estimates for all the elements

of T. Rogers (26) found that unrestricted least squares (ULS) estimates

of r frequently contained negative elements in the off-diagonal elements

which are by definition unacceptable. Although results obtained by a

minimum absolute deviations (MAD) estimator bypassed this problem, the

other major defect of estimated coefficients being of an unlikely

magnitude was not eliminated. For example, the 1950-1960 time series

of the two region system California - United States yielded the following

estimate of T;

1.0054 0.0030
r =

0.0808 1.0080

for which the off-diagonal elements overestimate observed migration

flows. Simple smoothing schemes did not rectify this deficiency.

The minimum absolute deviations estimator is derived in
Appendix B. This estimator utilizes a linear programming formulation
and the Simplex algorithm, and negative coefficients do not occur.
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Assumptions of the Rogers Model. The principal assumption

underlying an unbiased least squares estimation of the rows of the

interregional growth operator from the estimating equation [3.6] is that

the Y- (and hence also T) are indeed constants. Since it is quite

unrealistic to assume an error free population record, Eq.[ 3.6 ] is

required to be written as

y. = W Y. + u1 [ 3.8 ]

where u is a vector of error terms. For least squares estimates to

be unbiased, we further require the error terms u to be distributed

with zero mean. If an unadjusted intercensal population estimate is

used for W, this condition is by no means assured. More serious, however,

in view of the autoregressive nature of Eq. [ 3.8 ].(since y. is a lagged

column of W), is the fact that the errors may be serially correlated.

Under such circumstances it is known that the least squares estimates of

Y- are seriously biased.

The purpose of the Monte Carlo studies of the following

sections is to examine quantitatively the effect of various assumptions

about the error term on the estimation results, and to suggest certain

modifications to the estimating procedure such that the realities of

demographical data are more fully considered.

In Chapter III we shall assume that the error term u is

introduced by faulty specification of the intercensal population

record; i.e. that births, deaths and migration movements are incorrect!1

recorded (enumeration error). In Chapter IV we shall examine the
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case for which additive error consists of both enumeration error

and error introduced by virtue of migrations to and from regions

not included in the system from which the growth operator elements

are being estimated (specification error). Finally we shall consider

the case for which the interregional growth operator elements are no

longer constants but random variables.
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ERROR

SPECIFICATION
I

GENERATE DATA RANDOM NORMAL
DEVIATES

ULS ESTIMATES
(WEIGHTED)

I
ULS ESTIMATES
(UNWEIGHTED)

MULTIPLE REGRESSION
SUBROUTINE

MAD ESTIMATES
(WEIGHTED)

T

MATRIX ALGEBRA
SUBROUTINES

MAD ESTIMATES
(UNWEIGHTED)

SIMPLEX ALGORITHM

COMPUTE A

r
A

$
Figure 5 : Flow chart, Rogers Model Monte Carlo study

(PROGRAM MCM)



25

Monte Carlo Evaluation of the Rogers Model

The estimates of interregional migration rates obtained

by Rogers for real population series cannot be described as realistic.

Although Rogers has published the results of only a limited number of

actual computations, the model appeared to possess sufficient potential

to warrant a systematic statistical study. To this end a Monte Carlo

simulation was initiated. Data was generated artificially, using an

assumed set of migration and vital rates to obtain the interregional

population record W. The methods of least squares and minimum absolute

deviations were then applied to these data, and the resultant estimates

of the interregional growth operator compared to the true value of T

used in generating the data.

The data were generated by sequential application of the

equation

w1 = F w1'1 + u* [ 3.9 ]

where u is a vector of random disturbances. Suppose N data sets are

generated, and let W. be the j-th data record so generated. The j-th

estimate of Y- denoted Y- •* is given by

Y.. = (wTw)"1wT y [ 3.10 ]
ij 3 J 'ij L J

which is a random variable since W. (and hence y. .) are random variables.

Further let
, N ,

Y- = rr I Y [ 3.H ]'i N > 'ij L J
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tbe the sample mean of the N estimates Y... Now if u =0 for all t,

then WT = W_ = . . . = W., and hence v._ = v._ = . . . = y... = v. .12 N il i2 • iN 'i

If the error term u is non-zero, then the fact that u is distributed

with zero mean does not necessarily imply

-

If indeed E{y. •) ̂  Yi then clearly also E{Y^ } 7* y and y. . and y. are

known as biased estimators.

Computational aspects. The standard deviation of the additive

error term u is specified as a percentage of the current population.

Thus u is distributed normally as

3.12

where 6- standard deviation of the error term divided by the current

population. It is clear that the error term is heteroscedastic.

The generating equation utilized to obtain the interregional population

record W is thus

t „. t-1 t n t r , ._w = F w + v 6 w . . . . . . . . . . [ 3.13

where v is a vector of random normal deviates [RND) distributed as

,!). Details of the computations for which results are presented in

this Chapter are identified by the following set of symbols ("system

identification") ;

N = sample size

n - length of the intercensal population record, in years
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R = ratio of base populations

a = standard deviation of the error term, specified as
as a percentage of the current population[=100 6)

A flow chart of the computer program is shown on Figure 5,

Autoregressive bias. It can be shown theoretically that

the least squares estimates of r in an autoregressive model are consistent

2 *(and hence asymptotically unbiased). Thus as n -*• » so will E{y. .} -*• y-

- 3
Hence E{y.}-*y., independent of sample size. For small n (length of the

A

intercensal record) it is therefore to be anticipated that E{F> / r.
A

Figure 6 shows selected values of y.. plotted against n, and the bias

for n=15 is indeed much smaller than for n=8. However, the asssumption

of time-invariant migration rates is unrealistic over longer time

periods, and for five and ten year series for which this assumption may

be more realistic, the estimates of T are subject to significant auto-

regressive error.

Weighted and unweighted estimation. Rogers (26) has shown

that the heteroscedasticity implied by

[ 3.12 ]

may be eliminated by dividing the estimating equation [ 3.8 ] by w.

2
see e.g.Goldberger (27), p.273
since r consists of the k arrays y,, we may also write

E{f}
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SYSTEM IDENTIFICATION

N = 50 n=IO

,r = 1.020
0.025

Rs = iOM

0.030
1.020

IxlO'4 Ixl0~3

error term €L (see text)
0.01 0.02

0.02

0.15

21

0.10

0.05

SYSTEM IDENTIFICATION

N=50 n = IO

1.020
0.025

Rs = l

0.030
1.020

OM

n = 8

_TR_UE_VALU_E,

&„ = 0.025

0 IxlO"4 IxlO'3 0.01 0.02
error term 6^ {see text)

Figure 6 : Autoregressive bias as a function
of record length and the magnitude
of the additive error term.
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iewi) = (W e wi) Yi + (u* © wi) [ 3.14 ]

1 ' t1
or y. = W Y. + u

'i i

for which E(u u'T} = 9^2)

Rogers stated, on the basis of a single example, that

"...Weighted ULS estimates do not appreciably differ
from the unweighted estimates. Thus it appears that
weighting does not significantly alter the estimation
results." (Rogers, op.cit.,p.527)

The evidence of numerous Monte Carlo runs would, surprisingly, tend to

support this contention. Weighted estimation is recommended, but the

difference is small. The results for a typical run are given on Table

1. To obtain an overall measure of the deviation of the estimated

2
coefficients from the true values, Hotellings T (elaborated in Appendix

2
A } has been computed. Figure 7 shows that the T -statistics for weighted

estimates lie below those for unweighted estimates. Thus whatever

the significance level chosen to determine the critical region, i.e.

2 2
for which T > T upon which to test a null hypothesis of no bias,

weighted estimates are more likely to lie within the non-critical region.

Results also show certain of the off-diagonal elements of r to be markedly

more sensitive to autoregressive bias than the diagonal elements. The

estimates of y^i of Table 1, for example, are all significantly biased

(rejection of the null hypothesis of no bias using the univariate t-

2
test), even though T is non-critical for the estimated operator matrix

as a whole (at the same significance level).
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N = 50 r

a = 0.001%
u

a = 0.005%
u

a = 0.01%
u

System Identific

1.00560 0.00300

0.05570 1.01925

1.00505 0.003051

0.07296 1.01781

1.00102 0.00343

0.13370 1.01284

0.98840 0.00456

0.31902 0.99709

at ion

n = 10 R = 10 : 1
s

y\

Least Squares F

1.00480 0.00306

0.03612 1.02090

1.00394 0.00317

0.15216 1.01111

0.99440 0.00404

0.39701 0.99061

A

MAD F

Table 1 Estimated interregional growth operators
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CJ

h-

50

40

30

o 20

10

SYSTEM IDENTIFICATION

N = 50

r =
n= 10 Rs= 1<
1.0056 0.003
0.0557 1.019

D.I

0.1% 0.5%

Error term
1.0%

u

Figure? : Hotellings T for weighted and unweighted ULS estimates
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MAD v. ULS Estimation. Little information is available

on the statistical properties of MAD estimators. The papers by Karst
4

(28) and Ashar and Wallace [29) studied simple schemes , and some loss

of efficiency appeared significant (as compared to ULS estimates). The

t-test was used to test the hypothesis of no bias for individual

coefficient estimates, but none could be rejected.
2

Again using Hotellings T statistic as an overall measure

of deviation from the true values, it was found that MAD estimates were

considerably more sensitive to autoregressive error than ULS, and that

the weighting procedure was demonstrably deleterious. Figure 8 illustrates

this contention graphically. However, no significant difference

between MAD and LS was apparent in the variance of the estimates.

Table 2 shows a typical set of sample standard deviations of T for

various modes of estimation.

Apart from the greater sensitivity to autoregressive error,

certain computational disadvantages rule against the use of MAD as an

estimation mode. In some samples of 50 coefficient estimates from

synthetic data sets, up to 50 percent of the estimates needed to be

discarded. In some cases the specified limit on the number of iterations

in the simplex algorithm was attained, in others the solution basis

contained error terms rather than growth operator elements (see Appendix

B).

4*rhe systems y=a+bx+u and y=a+bX +cX2+u respectively.
5As measured by the test for the equality of sample variance-

covariance matrices elaborated in Appendix A.
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SYSTEM IDENTIFICATION

N=50

r =
n= IO

~l.004
0.001

Rs= 15 = 1

0.0036J
I-OI92J

0.1% 0.5%

Residual Error a

1.0%

u

Figure 8 :. Hotellings T for MAD and ULS estimates
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Lo

Error term

ou= 0.5%

%= i-o*

au= 0.5%

au= 1.0%

[ ] =

Weighted

22.0 1.7

337.0 26.0

47,0 3.6

513,0 39.0

30.0 2.3

187.0 14.8

53.0 4.3

369.0 29.6

. Var i
-^r } x 10 5

Unweighted

23.6 1.8

284.5 22.3

44.5 3.4

554.0 43.9

22.7 1.7

219.0 16.7

39.0 3.1

419.0 33.0

Table 2 Standard deviation of estimated growth operators
for various estimation modes.
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Dependence on relative population size. Figure 9 illustrates

the dependence of the growth operator estimates for the smaller region

in a two region set on the size of the larger region in the system.

It is to be noted that under constant error specification, the estimated
A

coefficients r -*• F as the ratio of base populations, denoted R ,
o

increases. Ceteribus paribus, we anticipate that the estimates for the

migration rates in the system Springfield-United States would be more

accurate that the corresponding estimates for the system Springfield-

Massachusetts.

Conclusions. The results of the Monte Carlo study show the

Rogers method of estimating migration rates from an interregional

population record to be unsatisfactory. An explanation of the poor results

will be attempted in the following section. In addition to serious

problems of bias, the variability of the estimators is unacceptable.

Table 3 serves to emphasize this point once more. The standard deviations
A

of the off-diagonal elements of f (i.e. the place-specific migration

rates) are many orders • of magnitude greater than the corresponding error

introduced in generating the data. Examination of further results

listed in Appendix C shows this to be quite general3 and not limited to

any one estimation mode.
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1.003

1.002

0.0038

0.0036

SYSTEM IDENTIFICATION

N=50

r=
n=IO
1.004
O.OOI

6e = 0.5%
0.0036~|
1.OI92

True Value

1:25 1:301:15 1:20

Ratio of base populations, RS

Figue 9 : Dependence of growth operator estimates on the ratio of base populations
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True growth
operator

1.020

0.012

0.030

0.005

1.065

0.030

0.005

0.025

1.100

Estimated
growth
operator

1.014 + 0.02 0.007 + 0.006 0.004 + 0.001

0.059 + 0.08 1.047 + 0.03 0.034 + 0.014

0.022 + 0.05 0.033 + 0.02 1.099 + 0.005

Table 3 Unrestricted least squares estimate of a three-region
system growth operator.
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Analysis of the Rogers Model

A

Variance of the least squares estimator y. The variance of

the least squares estimator is given by

= E{(Y - E{Y»CY - E{Y})T> ....... [ s.is

On the assumption that E{y} =Y f we may write

Var{Y> = E{(Y - Y)(Y - Y)> ....... [ 3.16 ]

Now Y - Y = Y - (WTW) WT y

= Y - (wV)'1 WT(WY + u)

T -1 T T -1 T
= Y - (W W) W WY - (W W) W u

T -1 T
= -(W W) X W u

hence Var{y} = (W^)"1 WT E{u uT} W (W^)"1 ..... [ 3.17 ]

Suppose further that W is in the weighted form (see Eq. [ 3.12 ]) for

which

T 2
E{u u } = 61

hence Var{y} = e2(WTW)~1 ........... [ 3.18 ]

The magnitude of the elements of the variance-covariance matrix is thus

T -1dependent on CW W) . This may be written as

, Adjoint CWTW)
»." "J rn

|w w|
T1 A

from which follows that if W W| is small, Var(Y> will be large. It is

T
therefore of interest to examine the conditions for which |W wl is indeed
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small. Consider a two-region system for which W W may be written out

as

T
W W =

r~ i
Wl

.W2.

C t

^ W l

r t
1 1

fwl W2^ "

(2) r t 1
I V;

t r tG
W2 lw/

w

w

I

0

T T
lwl W1W2

r T
1W2 W2W2

[ 3.19 ]

Suppose now that one population record (i.e. one column of W) can be

written in terms of the other, for example as

t , t t
W1 ~ 2

[ 3.20 ]

where u is a random term such that E{u } = 0. Thus

TW W =

for which it is easily shown that

u1) w*

t(2)v
[ 3.21 ]

W W
- tfW I

[ 3.21 ]

which is independent of b. Thus if u is small (implying a strong

T
relation between the two columns of W) , then |w W| is also small and the

resultant variance is large. Although we have seen that the estimates

are biased, i.e. E{y} t T s ami thus Eq. [ 3.16 ] does not hold strictly,

we infer that the large variance of the growth operator estimates is

due at least in part to strong multicolinearity in the intercensal

population record W.
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Perturbation Analysis. As an alternative approach,

consider the effect of a given change in the data matrix, say dW

on the resultant change in the solution vector, say d . Of particular
A

interest is the relative change in r expressed in terms of the relative

change in the data matrix W, By utilizing norms we may express the

ratio of the relative changes as a scalar, namely

i id?i i

f •• -- ............. [ 3.22 ]

| W

where f is defined as the amplification factor, and where the 1-norm

as defined by Fadeeva (32) is given by

I |A| I = max z|a..| I U 1 L = s ix . I1 ' ' '1 . . ' ir M i i i i xi
j i J

Table 4 shows the results of some actual numerical computations for two-

Tregion systems. The computed values of Cond(W W) , the condition

number, lie between 27000 and 28000, indicative of the ill-condition

T 4
of the W W matrix. The systems are described in column 1 (of table 4),

and the 1-norm of the perturbation dW indicated in column 2. Column 3

shows the resulting estimate of the interregional growth operator, with

the change in T (as compared to the unperturbed system) shown in column

4. Column 5 shows the 1-norm of dr and column 6 the amplification factor

f. The magnitude of the amplification factors encountered is indicative

of the sensitivity of the system to small errors.

see for example Forsythe and Moler (31) or Albasiny (30)
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Jnperturbed System

Perturbed System
A (=1955 pop. from
13004 to 13049)

Perturbed System
B (=1951 to 1960
pops, incremented
by +5

Perturbed System
C (=1951 to 1960
pops . incremented
alternately by±5)

Perturbed System
D (=1955 pop. inc-
remented by +100)

dy
2

50

50

50

LOO

r
3

1.01380 0.00228

-0.02640 1.01687

1.01236 0.00240

-0.02513 1.01676

1.01194 0.00244

-0.02609 1.01684

1.01387 0.00227

-0.02582 1.01682

1.01016 0.00259

-0.02683 1.01691

dr xio"5
4

144 12

124 105

187 16

35 76

7 1

62 5

364 311

398 4

|dr| xio"5
5

268

222

69

762

f
6

86

71

22

122

Table 4 Perturbation analysis, least squares estimates of the Rogers Model
(see text for explanation of tabulations)
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Errors in the Data

TAs a consequence of the ill condition of the W W matrix

small changes in the data will result in large changes in the estimated

coefficient matrix. Suppose that the true interregional population
*

record is given by W , but due to errors in measurement [enumeration
*

error) a data set W ̂  W is utilized for estimation purposes. This

problem is common to econometrics, where considerable effort has been

devoted to its resolution. Three approaches have been suggested, namely

1. The classical approach, in which analytical expressions

are derived on the basis of restrictive assumptions about the probability

distributions of the errors involved. Results show, in general, an

underestimation of the true coefficients. The mathematics for a

multivariate problem, even in the absence of autoregression, are quite

intractable, and were not further explored.

2. Instrumental variables, widely used in econometrics,

which do yield consistent estimates. The use of vital statistics as an

instrumental variable will be examined in Chapter V

3. Grouping methods, based on the grouping of observations

and less restrictive assumptions about the error terms. Of these we

shall investigate the method proposed by Wald C35).

Johnston (33), for example, devotes an entire chapter
to the errors in variables problem.
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6
Wald's method Suppose we wish to estimate 3 from some

linear model given by

y. = a +3 x. + u. ........... [ 3.23 ]• ' i i i

E(u. ) = 0i

when both y. and x. are measured with error. If the observation pairs'i i r

are arranged such that the x. stand in ascending order

and the observations are divided into two equal groups containing the

smaller and larger x-values respectively, each group of m=n/2 pairs

(x. ,y.) , then Wald's estimator of 3 is given by

[ 3 . 2 4 ]

where x. and y. define the center of gravity of the groups given by

T m , m
x = - t x v = - Y Yxl m L i yi m L yi

x = i? x ~ = -?2 m ^ i+m 2 m ^ i+m

**,

Thus 6 is the slope of the line connecting the two centres of gravity.

Wald's estimator of a is given by

A A

0,.,= 7 - B.,, x t 3-25 ]n ' w

The brief recapitulation of Waldfs method follows Theil and
Yzeren [34). For the original exposition see Wald C35)
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where x, y defines the centre of gravity of the entire point set

(x., y.). Wald's method has the merit of computational simplicity

over least squares, and, more relevant in our context, yields consistent

estimates of p. Its disadvantage lies in a loss of efficiency, which is

dependent on the distribution of the x.. For the special case of a

rectangular distribution, appropriate for a uniformly spaced time

series, Bartlett (36) has shown that, given

E{u.u.} = 0 ,ij*j1 3
E{u?} = a

then Var{Bw> =a2 * • ' ' [ 3.26 ]

is minimized if both the left hand and right hand groups contain one~

third of the data pairs, the central third not utilized for the estimation

of Sr

Wald's method has been extended to two independent variables

by Hooper and Theil (37). Just as two centres of gravity are sufficient

to determine a straight line in the x-y plane, so will three points

determine a plane in 3-space.

Application of Wald's method to the Rogers Model. For a k-region

model, it follows that the data need be subdivided into (k+1) groups.

However, the (k+1)-dimensional solution surface (a plane for k=2) is

restricted to pass through the origin since the Rogers Model demands
Y ' .

zero intercept. Thus we may use LS on the (k+1) centres of gravity subject

to the prior hypothesis a = 0.
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Figure 11 demonstrates this method. To effect an objective

comparison with least squares, the perturbed systems of table 4 were

re-estimated by the above modification to Wald's method, and the results

tabulated on Table 5. As expected, the error amplification is less

dependent on the distribution of errors than by LS estimation. However

the order of magnitude of the amplifcations remains similar, and the

estimated coefficients themselves have not changed significantly. In

particular, negative coefficients are still present. Although but

few systems were evaluated by this method, the overall similarity of

results to least squares did not justify the programming effort of a

full Monte Carlo study.

Experiments with different grouping arrangements, e.g.
(ra =2, m?=6, ra,=2) in place of (m.=3, nu=4, m,=3) showed that the most
evenly partioned groupings gave best results.

n

Wold's Estimate^ passing
through centersof gravity

x.y.

LS Line of best fit passing
through origin

Figure 11 : Wald's method under the prior hypothesis of
zero intercept.
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System

Amplification Factor f

Wald's Method Least Squares
(see table 4
column 6)

57

52.5

58

66

86

71

22

122

Table 5 Comparison of Wald's Method and least
squares estimates of the Rogers Model
interregional growth operators.
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C H A P T E R IV

MIGRATION RATES AS RANDOM VARIABLES

Specification Error

In actual computations for sets of regions (say a central

city and a subset of suburbs), an additive error of the type analysed

in Chapter III is incurred by virtue of migration into the system from

excluded regions. Let the population record for the k included and m

excluded regions be partitioned as

W* = [ tf , ft ]

(n x k+m) (n x k) (n x m)

and let the interregional growth operator for all (m+k) regions, denoted
*

r , be partitioned as

(k x k) (k x m)
[ 4.1 ]

[m x k) (m x m)
L-

Let us suppose that the error term u represents no longer enumeration

error as in the previous chapter, but represents the error introduced

by virtue of migrations to and from the m omitted regions. Thus in

place of
yi = w YI + u [ 4.2 ]

we have = W ^ + w Yu [ 4.3 ]

where Y is the transpose of the i-th row of r . Now the least squares

estimate of v. as obtained from Eq.[ 4.2 ] is given by
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WT . . ' ; . ' ....... [ 4.4

To compare this estimate with obtained from Eq.[ 4.2 ], premultiply

T
Eq.[ 4.2 ] by W to obtain

WT W Y- = WT y. - WT W Y, .......... [ 4.5 ]"i 'i 'li L J

hence y. = y- - CŴ )"1 WT W YU ......... [ 4.6 ]

>, *»

from which it is evident that Y- - Y- if 1) Y-,- = 0, implying no migratory

movements to the omitted regions (i.e. model is specified correctly] or
T-

2) W W = 0. The Rogers Model demands that the least squares hyperplane

pass through the origin, and thus the computations use variables in

T~original rather than deviation form. Hence W W will always be positive.

The restriction of zero intercept will be relaxed in Chapter V, and then
T-

using deviation form the condition W W = 0 would imply that the

population record of each and every included region be "uncorr elated"

with the population record of each and every excluded region. In view

of the multicolinearity noted in Chapter III, this is improbable.

Let us replace Eq.[ 4.3 ] by the more realistic specification

y. = W Y. + W YT + « .......... [ 4.7 ]7i 'i li

for which enumeration error is included in addition to the error
*

incurred by omission of the m regions. With W partitioned as [ W , W ]
*

then the least squares estimate of the i-th row of T [i ̂  k) is

given by
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-1
A

Yi

f-

Jii

=
WTW WTW

WTW WTW

T ~
W y

"TW y

t 4.8 ]

Applying the partitioned inversion rule it can be shown that

Y li

CW W) W y - (W W) W W D W C y

D"1WTC y

where C = I - W

D = W C W

W

[ 4.9 ]

and where the superscript ' indicates that the estimates Y- /YV

derived from the correctly specified equation [ 4.7 ]. It follows

directly that

"' T - 1 T T -1 T ~ A'
Y- = CW W) W y. - CW W) W W Y..
'i 'i 'li

I

W

or Y. = Y' + CWTW)-1WT W Y! [ 4.10 ]li

and thus the least squares estimate from the incorrectly specified

equation f 4.2 ] equals the least squares estimate from the correctly

T~
specified equation [ 4.7 ] again only if Y . = 0 or if W W = 0.

From the above elaborations it is evident that specification

error may be eliminated by including in an interregional system an

Goldberger (27),p.27 and p.174, who obtains this result in
connection with stepwise regression procedures.
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additional region that represents the sum of all hitherto excluded

regions. In the study of migration movements in the Springfield area,

inclusion of a system "rest of the world" would thus eliminate

specification error. In practice, for reasons of comparability of data,

the region "rest of the world" must be replaced by the region "rest of

the United States", reducing specification error to overseas immigration

and emmigration.
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Migration Rates as Random Variables

Autoregressive formulation. The assumption of constant

migration rates, as required by least squares estimation, is not met in

reality. Assuming therefore time dependence of migration rates, let

y. . be the elements of M at time t. A demographically plausible and

mathematically not intractable assumption is that successive annual

migration rates y,., p.. , are drawn from a bivariate normal population

with means y. .= y. .= y. . and standard deviations cr. . = cf.V = a. .
iJ ij ij ij ij ij

and with serial correlation coefficient p... It is hypothesized that

migration rates fluctuate about some mean value over an n-year period,

with deviations from the mean exhibiting strong serial correlation. A

higher than average annual rate will thus most probably be succeeded by

another higher than average rate, depending on the magnitude of the

serial correlation coefficient. The conditional expectation of such a

process may be given as

E(yt. y*:1} = ji.. + p.-Cy*"1 - y. .) [ 4.11 ]pij Hij Kij ^13 ij ti;r L J

and Var{yt. y tT1} = o2. (1 - p 2 . ) . [ 4.12 ]Hij Mij 13 v *ij j L J

Fiering (38) has shown that the sequence

t - , t-1 - , t f-, 2 ,0.5 r . 1T ,y . . = y . . + p . . f y . . - y . . ) + v a . . [ 1 -p . . ) [ 4 . 1 3 ]Hlj Hij Kij ^H i j *iy ij ^ ^ij-1 L J

has the properties [ 4.7 ] and [ 4.8 ] and where v is a random normal

deviate distributed as N(0, l ) . Recalling that F = M for i ? j, and

and assuming that a similar serial dependence exists for the diagonal
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elements of T, we may write in matrix notation for a k-regional model

F1 = f + R^cr*"1 - f) + vV[«R* ....... [ 4.14 ]

where T = interregional growth operator at time t

f = mean growth operator over the n-year interval

R = matrix of serial correlation coefficients p. .

V = matrix of random normal deviates v. . at time t

I = matrix of standard deviations a. .

* 2 0 5R = matrix of elements (1 - p. .)

Monte Carlo Study. To investigate this time dependence in

its effect on the least squares estimation process, a second Monte Carlo

simulation was executed. Data was generated by sequential application

of the relation

w* = r* wt"1 ............. [ 4.15 ]

where r is given by Eq.[ 4.14 ]. The resultant least squares estimates
A

f were then compared to the mean growth operator f utilized in generating

the data as in the Monte Carlo study of Chapter III.

Figure 12 shows the dependence of Y- . as a function of

0(Y- -)> tne standard deviation of a particular growth operator element
<J

and the serial correlation coefficient. We note that weak serial

correlation reverses the direction of bias, but stronger serial correlation

again reverts to the direction of bias observed for zero serial correlation,

At some optimum value of the serial correlation coefficient, the

estimators are unbiased. This is consistent with the effects of auto-
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Figure 12 : Estimated growth operator elements as a

function of growth operator variability
and serial correlation
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correlated additive errors in an autoregressive equation. But since

the degree of serial correlation is unknown a priori, this phenomenon
A

cannot be applied to adjust the estimated y in an actual computation.
2

Application of the T and t tests again proved inconclusive

with respect to detecting significant differences between weighted and
-.**• .-•

unweighted estimation. However, Var{r} was significantly lower for

the weighted estimates.

Conclusions. In the Monte Carlo studies of Chapters III and

IV we have examined the effects of violating the requisite assumptions

for unbiased least squares estimation of the interregional growth

operators. These violations are known to exist in the light of

present knowledge of migration behaviour and enumeration accuracy. The

information obtained from these Monte Carlo Simulations will be utilized

in subsequent Chapters in the design of a computational model that

recognizes the limitations of demographical data more fully than does

the original formulation of Rogers, and that recognizes the stochastic

nature of the growth operator elements.
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C H A P T E R V

AN ITERATIVE ESTIMATION MODEL

Introduction

As we have seen in the two previous Chapters, demographic

reality violates the assumptions of the statistical estimation model,

in particular that of an error-free data record. The results of Chapter

IV, where migration rates were considered as serially correlated random

variables, suggest that the least squares technique will yield unbiased

estimates of the mean growth operator over the estimation interval if

the data record could be appropriately smoothed. Rogers (26) did

experiment with a simple smoothing scheme, but was unable to answer the

question of what constituted the "best" degree of smoothing:

"...This (sensitivity) underscores the importance of
establishing a more rational method for smoothing
the data points than is presented here."(Rogers, op.
cit.,p.529)

In this Chapter an iterative estimation model will be developed for

which the optimum degree of smoothing is well-defined.

First we turn, however, to a consideration of how certain

relations between the elements of the growth operator may be utilized

to obtain more accurate estimates of r. The assumption of homogenous

propensity will also be relaxed.
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A Restricted Ltast Squares Estimator

Derivation. To illustrate the development of the restricted

estimation model, consider the equations governing a two-region

population system

t+1 t t
wl * Yll Wl + U21 W2

U12W1 + Y22 W2 ' ' ........ < 5-2 1

Decomposing the Y. . into their constituent parts (see Eq.[ 3.6 }),

w " ' ~ = M,~ w. + C1+32~£2"*U2^ WT • * • ' t 5'2* X£ -L *• *• ^

and recalling that 3, w « b, and 6.. w. » dt (Eq.[ 3.1 ] and [ 3.2 ])

t+1w. ti +

t
1 +
2

jt
d l 3

jtd* *2

ft •» *fl-QJ.J W. +1 i

t
U, -• W, +M12 1

t
W21 W2

ri "^ tfl-U)-J W«
2 2 C 5'3

For this two-region systen, the net outmigration rate ^, clearly equals

the place specific rate p-2 (sine* there is only one destination for

outmigrants) . For the general k-region case

*. - * 10. r _ . ,
13 i ............. [ 5.4 ]

i.e. the net outmigration rate equals the sum of the place specific

rates for any one coluwi of M. In order to recognize this restriction
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on the coefficients of the growth operator it is necessary to estimate

all k rows of r simultaneously. Also, since births and deaths are

available from published vital statistics records and can be subtracted

from the left hand side of the estimating equation (i.e. Eq.[ 5.3 ] for

a two-region system) prior to any numerical computations, we shall

redefine y. such that

yi =

(n x 1)

t+1 ,t+l .t-t-1w. - b, + d.1 1 1

t+2 . t+2 ,t+2w. - b. + d.1 1 1

t+n , t+n ,t+n
w. - b. + d.1 1 1

The simultaneous estimation of all k rows of T requires the estimating

equation to be rewritten as

y

y

^

W O 0

0 W 0

0 0 W

V
^

. Y k _

. . . . [ 5.5

which can be written in a more compact notation as

WK YK
<n x k2) (k2 x 1)

[ 5.6

(kn x 1)

The difference between the capital K subscript, which indicates a
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simultaneous estimation of r, and the lower case k subscript, which

indicates the number of regions in a system,should be fully noted.

Now for the two-region case considered above, the

restriction [ 5.4 ] can be written in matrix form as

w
"21

"12

l-w2

1

1
[ 5.7 ]

1 0 1 0

0 1 0 1

R ^K e2

This prior restriction can be incorporated into the least squares

estimation procedure as follows. For the general k-region case, we seek

a Y^, say YK, that minimizes

« (yK - CyK 5.8

subject to R YV = e,
K K .

where R is a matrix that is partitioned as

R = [ Ik ik • • • Ik 1
1 2 . k

This problem may be formulated as the minimization of

s = ' 2X(R YK " ek} 5'9

where A1 is the appropriate C^ x 1) vector of La grange multipliers.

The Lagrange multiplier approach to prior information
regression was first suggested by Dwyer(39). See also Theil (40) and
Chipman and Rao (41).
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Thus s = yyK - 2yK w yK + Y w WK YK - 2 X' CR YK - efc) [ 5.10 ]

hence ^ = -2 W^ y, + 2 W£ W, YK - 2 R
T. A' I 5«" 1

K

RT X* . . . . 5.12

It can be shown that

Y* = (w W ) - 1 w y + (w W ) " : RT [R

(ek - R (w W^" W yK) . . . [ 5.13 ]

*
Yr will be referred to as the restricted estimator. It can also beR

shown that there has been a gain in efficiency over the unrestricted
^ '-* *• •?

estimator ^v , since Var{yv}< Var(Yv}.

Relaxation of the homogenous migration propensity assumption.

Implicit in the Rogers Model formulation of interregional migration is

the concept of homogenous migration propensity, in that the migration

rates p. . are assumed to operate on the entire population. Prior

knowledge of migration behaviour, however, indicates that this assumption

is erroneous since certain age and skill groups are very much more

susceptible to migration than others. Let us assume that the population

consists of two segments, one potentially mobile, the other not

2
Goldberger (27), p.257 and Judge and Takayaraa (42)

3Goldberger (27), p.258 or Theil (40) -
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susceptible to migration during the interval considered. Let this latter

segment be denoted z.. Then we may rewrite Eq.[ 5.3 ] as

bl + dl = (1 - VCW1 - sl> + P21 CW2 * Z2} + Zl

[ 5.14 ]

but since the z. are assumed constant over the estimation intervali

Wj* - bj + dj = (Zj - (1-oij) zx - U12 z2) + Cl-Wj) Wj +

W2" b2 + d2 = (Z2 ' '(1"W2} Z2 ' y!2 Zl} + y!2 Wl + (1-u)2) W2

which is identical to Eq. [ 5.3 ] with the addition of the constant terms

al = "l Zl - P21 Z2

a2 -= ̂ 2 Z2 " y!2 Zl t 5.15 ]

But for the two-region case, u. = u12 and w_ = y-... Hence a1= -a . For

the three-region case we may write

Zl - "21 V M31 Z3

"2 = "2 Z2 - "12 V "32 Z3

°3 = U3 Z3 - V13 Zr W23 Z2 [ 5-16
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hence a. + ou + a- = 0 and generalizing to the k-region case we have

by induction

k
E a. * 0

This additional restriction on the set of estimated coefficients will

be added to the restriction set [ 5.4 ]. In matrix notation, Eq.[ 5.14 J

becomes

w + - b + d = a + rw [ 5.17 ]

and hence the corresponding estimating equation for the i-th row of r

is
v. = f e W 1

Y
y. = [ e W ]7i l n J [ 5.18 ]

(n x 1) (n x k+1) (k+1 x 1)

Tb simplify notation, we shall still write

• WK YK

for the simultaneous estimation of equation [ 5.18 ] for all k rows of

r, but noting that W has been augmented by the n-unit vector and that the
/v

first element of Y-> now of dimensions (k+1 x 1), represents the
• • .A

intercept term a.. Computationally there is no difference between Eq.

[ 5.18 ] and Eq. [ 3.7 ]. The new restriction set for a two-region

system is now

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

' "l
1 - 0 ) ,

"21

V

-1 " \

=

0

1

1

. . . . [ 5.19 ]



62

and for the k-region case we have

Jk+l •'k+l ' ' ' ^+1 ]

1 2 k

Yl

Y2

\
k *

= 0
ek

. [ 5.20 ]

R YK

(k+1 x k(k+l)) (kCk+1) x 1) Ck+1 x 1)

"*The restricted estimator YK thus contains the estimated

intercept terms a.. However, it is also necessary to obtain the z^

before we can compute the magnitude of the migration streams. For

example, the number of migrants from region j to region i during the

estimation interval, m..̂  is given by

n

from which it is clear that the zi must be known explicitly. Unfortun̂

ately the system of equations represented by [ 5.16 ] for the three-

region case is singular, and cannot be solved uniquely for zi in terms

of the a.. Suppose, however, that that segment of the population not

susceptible to migration can be approximated by some constant ratio

of the base population. For example, let zi = c WA where c is some

positive constant. .Then it follows from Eq. [ 5.15 ], for the two-

region case, that

al - C W [ 5.22
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al
and c = ~ xo ,, o

ul "l - y21 W2

Oal wlhence z, -'1 A o " o
"l Wl - W21 W2

which is easily generalised to the k-region case, namely

a. w.
z. = 1_^ [s.23]

o „ . ow. w. - Z u.. w.
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Iterative Improvement

Intercensal Population estimates. The restricted estimation

technique elaborated above requires an intercensal population record

that is consistent with the assumptions of the interregional model. Thus

a simple geometric or linear interpolation for each of the regions in the

interregional set will clearly result in zero estimates for the off-

diagonal elements of the growth operator. Unadjusted post-censal estimates

may contain considerable discontinuities, and the use of the midyear

population estimates published in the Massachusetts Vital Statistics

Documents proved quite unfruitful.

A more productive approach lies in the modification of the

modern techniques of post-censal population estimation for the purpose of

retrospective intercensal estimation by elimination of the closure error.

Examination of such methods quickly showed the regression methods to

possess the prerequisite consistency with the interregional formulation.

Amongst the more recent contributions to such techniques, Zitter and

Shryock (43) demonstrated the power of regression methods in a

comparative study conducted by the US Census Bureau. Rosenberg (44)

reported that the ratio-correlation technique was the most reliable

available at the county level, and Pursell (45) showed that the letter's

predictive power could be enhanced by augmenting the conventional

symptomatic indicators of population (births, deaths, automobile

registrations, non-agricultural employment) with dummy variables and

stratification by economic base characteristics.
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The correlation methods generally depend on a multi-

variate regression of the form

P
w" = I a. X [ 5.24 ]
1 j=i J *•)

where w. is the population of the i-th region for the census year n,

X.. ,j=l, . . p is a set of symptomatic variables and a. the corresponding

set of regression coefficients.

Consider, for example, the use of vital statistics (births,

deaths) as symptomatic indicators. We postulate that there is a

linear relation between increases in births and deaths and an increase

in population. Perfect proportionality would imply

t 1 ut u1 jt ,1w . - w . a . b . - b . a _ d . - d .
-i 1- *- -i r+—*- ^—T • • - [ 5 . 2 5 ]
w" - w1 Va2 b" - b1 Va2 d" - d1

1 1 1 1 1 1

from which , . .
1 f .t . 1 ,t, w. - w.

t i l lw. = w. +i i a1+a2

..7 - d.
i i . . i i

1b - b d - d

where w. = population of the i-th region at time t

w. = population of the i-th region at time 1 (=census
population at the beginning of the n-year interval)

w. = population of the i-th region at time n (^census
population at the end of the n-year interval)

b. ,d. = allocated births, deaths for region i during the
t-th time period

b., b., d., d. = allocated biths and deaths for region i
in the census years n, 1 respectively.
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and where the weighting coefficients a1, a are derived from the

multiple regression of population growth over the total interval

on the corresponding increase of births and deaths, namely

Cw" - wh = a. Cb" - b1) + a, (d? - dj) i=l,2,...,k [ 5.27 ]
-L -L J. J_ _L ^ .!» J.

Births and deaths must also be regarded as random variables,

and the variations in annual vital rates may be considerable on a

local area basis. These variations are considered in more detail in

Chapter VI. A more representative value for a census year is thus

given, for example, by application of a 5-pbint moving average to the

series of vital statistics about that census year, namely

,n+2 . ..n+2
r^ 1 V u* jtt 1 V j& r r oo 1b. = •=- > b. d. = =- } d [ 5.28 ]i Sn

L
 Oi i 5.^ n i L J

£=n-2 £=n-2

—1 —1and analogously for b. and d.. The regression equation [ 5.27 ] uses

these smoothed values to estimate the weighting coefficients a..

It follows from Eq. [ 5.26 ] that changes in the crude birth

and death rates during the intercensal interval do not affect the

resultant population estimates provided such changes are linear over the

entire interval. Changes in the crude rates result from changes in

mortality (for which the above assumption is not unreasonable), changes

in fertility (for which the assumption is less reasonable), or from

changes in the age structure resulting from age selective migration

(for which the assumption is more questionable). Nevertheless, numerical

results justify the intuitive notion that the estimation of crude,average

migration operators is insensitive to non-linear changes in vital rates.
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Iterative Improvement Algorithm I. The assumption of

constant vital and migration rates (or linearly variant) implies that

for each and every column of W the sequence of values

t t+1 t+n
V wi •••" wi

be either monotonically increasing or monotonically decreasing. That is,

the differences

[wt+1 - w*), t = 1, 2, . - ., n

must all be positive (for an increasing population), all negative

(for a decreasing population) or all zero (in the case of a completely

stagnant population).3 Examination of Figure 14 shows this requirement

to be violated for the typical local area, even using the 5-point
*•*

moving average. Consequently, the restricted, estimator yR will still

yield poor results, reflected in estimated coefficients of improbable

magnitude. Some measure of adjusting this initial intercensal estimate

is demanded such that the aformentioned conditions are fulfilled. A

smoothing scheme would be desirable, since this would concurrently

eliminate the deleterious effects of an erroneous data record, and smooth

the fluctuations in the data resulting from the stochastic nature of the

growth operator elements.

Introducing the notation

7r(WK, R) = (W^Wj,)"1 RT [R CWJ^r1 R1]'1 . - . - [ 5.29 ]

3These conditions hold also, of course, to the ordered
sequences of births and deaths.
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YK = 5.30

then Eq.[ 5.13 ] may be written in the abbreviated form

YK =
5'31

Suppose now that the true growth operator, r, were known. Then

application of r to the known base population would yield an intercensal
*

population estimate W . The least squares estimate of y v> denoted asK
"*

usual by yv, is then given by

A * AT1 * _ 1 *-T *

Y = CW K

*T * _ 1 *T *

K WK3 WK yK

[ 5.32 ]

But since this ideal data set is error free

*T * -
(WK\) .......... [5.33]

and hence YK = YK
 + TT(WK,R) (e - RYK) ......... C 5.34 ]

Also, the restriction set [ 5.20 ] is exact, i.e.

and thus Y = YK + t(W,R) 0 [ 5.35 ]

This simple result suggests the following iterative improvement scheme.

Given some initial estimate of the intercensal population record, W,Q,,
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*"* 4t

evaluate YK(-O) = y rrn-\ + *C»Wm'RKe - RY^rnO I 5.36 ]

and let A be the stun of the absolute values of the array of corrections,

namely „*
A(YK ( 0 )) = I U C W , R H e - R Y ) | [ 5 . 3 7 ]

By some transformation, denoted g(W,,rn-,), obtain a second estimate
K(_UJ

and recompute
A it A ***

[ 5.38 ]

[ 5 . 3 9 ]

Now from Eq.[ 5.35 ] it follows that

A(YK) = 0

and thus a logical criterion for the best intercensal population

estimate, say W v r r i n+^> is such that

*ACYKfi-J = minimum [ 5.40 ]

Such a criterion presupposes that the successive transformation

given by g(Vt f ,) does in fact yield a series of values of A that
N(,1J

possess a minimum. If such a transformation can be found, then the

iterative computation commenced in Eq. [ 5.36 ] - [ 5.39 ] is continued

until a minimum value of A is attained. If the first minimum so
A*

encountered is the global minimum, then yr, , is such that
K.(.UptJ
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The intercensal population record W is composed of k columns,

one per region. The transformation W,.,= g(W,. -O is therefore

k-dimensional, namely

The problem may be visualized geometrically as a multidimensional

response-surface optimization in k-dimensional transformation space.

The literature on response surface optimization is quite extensive,

and of the proven techniques available to locate the optimum (i.e.

the minimum value of A that corresponds to a particular number of

transformations), the discrete-step, steepest descent procedure appears

appropriate. Although this technique requires that A be a convex

function over the transformation space, for which we are assured that

any located minimum represents the desired global optimum, there are

significant computational advantages over algorithms requiring less

restrictive conditions. In particular, fewer iterations are generally

required than by uniform grid (complete search) or random sampling

methods .

For an exhaustive consideration of the theoretical and
computational considerations involved, see Wilde (46) and Hill and Hunter
(47). The only application of this technique in the environmental
engineering literature appears to be Hufschmidt (48) in the context
of a response surface representing net benefits to a multiple-use
reservoir system, the axes representing the different inputs (units
of flood control storage, units of irrigation capacity etc.)
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Experiments with a number of data transformations showed a

three-point moving average transformation on the columns of W to

yield a sequence of values of A that did indeed possess a minimum

and for which the corresponding estimate of the growth operator was

consistent with prior knowledge of migration behaviour.

Consider, for example, a two-region system dbr which an

initial estimate of the interregional population record is given by

W(0,0) = Cwl(0r W2CO}3

where the bracketed subscript indicates the number of smoothing

operations on each column of W. Then evaluate

~* ** T -IT
)̂  YK(0,0) = (WKCO,0)WK(0,0)5 \CO,0) yK(0,0)

A* T -IT
YK(0J1)

 = (WK(0,1)WK(0,1)) WK(0,1) XK(0,1)

A* -p -IT
YK(1J0)

 = (WK(1,0)WK(1,0)) WK[1,0)

where ^vrn n-i = block diagonal matrix of blocks W

= (:wl(0)*W2(l)}

In words, l\.(yvf-. «-,) is that value of the objective function obtained
K-l-1 jUJ

by smoothing once the intercensal population record of region 1, region

2 unsmoothed.
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Then evaluate

to obtain the next starting point. Thus, for example, if

AtTK(1.0)J -• AtTKCO,0)} >• AtTK(0,l)) '

the next starting point is given by the coordinates 1,0 in the trans

formation space (corresponding to Wn nO, and the next iteration
\.*-tVj

computes the estimates

_ ^
YK(2,0) = (WK(2,0)WKC2,0)) WK[2,0)

- I T

and again selects the maximum

Max{A(Y*[2)0)) -

to obtain another starting point. The iterations are continued in this

manner until a minimum is attained. Figure 14 shows such a path in

two-space as manifested by the computer algorithm for the two-region

set Massachusetts- West Springfield. The optimum estimate of yY isK

given by the intercensal estimate W,. 1O.(_4 fij)

Figure 15 shows the initial population estimate for West

Springfield, "omi* which is based on proportionality to the smoothed

record of vital statistics over the intercensal interval, and the final

intercensal estimate w.n_, for which the optimum was obtained.



o ,
1

/
/
/
1
I
I
I
I
\
I
\
\
\
K

inIU

Numbe
operat
of W
for M

on

— ,^^^
/i

/ "
/ _

| .
i
1 '

I
\
\

V

r of smoothing
ions on W| (column 1
= intercensal estimate
assachusetts )

i
4

(

'— *

)
""'

,— ̂
V

•

V"~~*r
r
>

h
i

. ~>
^

^^ -"
\
\
\

. \
\

\
op

1
1
1

• Direction of steepest
descent at each point
Direction of unsuccessful
trials

•̂

«»

timum point (=4,15)

0 10 20
Number of smoothing operations on W2 (column 2 of the data matrix W

30

Figure 14

= intercensal estimate for West Springfield)

Discrete-step, steepest descent algorithm for the two-region system Massachusetts-W.Springfield



75

25000

24000

Intercensal population estimate:
k A At optimum smoothing (W2()5J)

I • Initial estimate (proportional
.to smoothed births) (W2(0])

5 point moving average
of raw births

1950 1955 I960

Figure 15 : Initial and optimum estimates of intercensal population
for West Springfield, 1950-1960
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Iterative 'Improvement Algorithm II. An alternative objective

function may be formulated by comparison of the net migration vector

generated by the estimated growth operator to an independent estimate

of net migration obtained by the so-called .vital 'statistics method.

The (k x 1) vector of net migrations, denoted £, is given by this latter

method as

= w
n . w° . + d ......... 5.41+

t=l t=l

which is readily computed from the allocated birth and death statistics

available for local areas. On the basis of an estimated growth operator,

the resultant net migration vector is given by the expression

i = ?{nV + I f^V - d1) - w° - I b1 + I d1 [ 5.42 ]
i=l i=l i=l

and therefore another criterion for the quality of the growth operator

estimate is

** i " i
9(YK) = I A - fc| = minimum ......... [ 5.43 ]

Again using the steepest descent discrete-step algorithm to locate the

minimum of 0, the optimum estimate of yr will be obtained for which theK

deviation of the resultant net migration vector to the vital statistics

method estimate is minimized.

See e.g. Siegal and Hamilton C49)
'This formulation is inexact, since allocated births and

deaths are published on an annual basis(January 1-December 31), whereas
the census population is for April.



Input of Data File
{Births, deaths, census
populations)

Select Regional System
Adjust for Region Inclusion

Compute 5-point moving
average for vital events

Coarse Grid Search

Discrete-step, Steepest
Descent Algorithm

Computation of total
in- and out-migrations
net migrations

Adjust births, deaths
for Census Dates

Smoothing
Transformation

Computation
Routine

Matrix Algebra
Routines

Figure 16 : Flow chart, Iterative estimation model (PROGRAM GRADP)
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Computational Aspects. Preliminary studies showed the

necessity of using double precision arithmetic due to the large differences

in the order of magnitude of the regressors? Sample coefficient matrices

(estimated interregional growth operators) are given on Table 6 at the

optimum point for both normal and double precision arithmetic. It is

evident that the constraint set [ 5.20 ] is not satisfied in the former

case. These discrepancies are reflected also in the subsequent estimates

for total in- and outmigrants. For example, the normal precision

estimate for total inmigrants during the period 1955-1960 for West

Springfield is 3208, against 4023 for the double precision estimate.

For 3-region systems, double precision was even more essential despite

the significant increase in execution time.

Experiments showed further that the convergence of the

discrete step, steepest descent algorithm was accelerated by fitting

a polynomial to the five-point moving average that defines the initial

intercensal estimate of W, prior to the first iteration. The least

squares criterion differs from standard practice insofar as we require

the polynomial to pass through the data points of the census years.

Let the ra-th degree polynomial be represented by

m p
C(t) = I a t* [ 5.44 ]

£=o *

Then the problem is to minimize

t m . fo^
» • I [I at t* - w^]

C2) [ 5.45 ]
&=0

subject to J a = 1, a = 0x, o

7 figures.

0

Double precision arithmetic is significant to 15 rather than
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Normal Precision Estimate Double Precision Estimate

0.99906 0.03840 -578.48

0.00808 0.98653 438.20

1.00714 1.02493 140.28

0.99984 0.03000 -34.21

0.00015 0.96999 34.21

E 0.99999 0.99999 0.000

Table 6 Normal and double precision arithmetic estimates of the
growth operator for the two-region system Massachusetts-
West Springfield.

Estimated growth operator r

No smoothing,
origin of trans-
formation space
[0,0]

Grid search min-
imum
[ 0 , 75 ]

Final optimum
[ 0 , 84 ]

0.994144 0.676254 13139.0

0.005855 0.323745 -13139.0
•*— ii n

0.999774 0.037126 128.73

0.000225 0.962874 -128.73

— —

—' —
0.999S40 0.037126 -34.21

0.000159 0.969999 34.21

Table 7 Estimated growth operators at the origin,
grid search minimum and final optimum for
the -two-region system Massachusetts-West
Springfield.
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and where ' ,
w. - w..t i iw. =i n 1w. - w.i i

The general solution for an m-th degree polynomial is given by Meier C50),

to which paper the reader is referred for further details, since the

solution is too cumbersome to be reproduced here.

A problem that created serious difficulty was the frequent

occurence of negative coefficients in the estimated inter-regional growth

operators of 3-region systems. These are, of course, unacceptable in

the framework of interregional migration rates. Experiments with the

MAD estimator showed that where least squares yielded a negative

coefficient, the corresponding.variable did not enter the optimal solution

basis of the MAD simplex .algorithm; by implication the corresponding

migration rate is zero, which is generally improbable.

The iterative improvement algorithms were therefore modified

such that the domain of transformation space that results in negative

coefficients in the growth operator estimate be impassable. The origin

no longer suffices as the starting point for the general case, and hence

a coarse grid search determined that point on the lattice for which the

objective function was found to be minimized, subject to the resultant

coefficients being positive. The steepest descent algorithm commences

at this point, but is no longer permitted to enter the domain of smoothing

operations that results in negative coefficients, even if the objective

function would thereby be lowered. Since the transformation space is

discrete (the, number of smoothing operations on any column of the data

matrix is integer-valued), the optimum is still well-defined.
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Results. Experiments with real data for the thirty

communities of the Lower Pioneer Regional Planning District showed

the proposed technique to give unsatisfactory results for the small

rural towns, many of which contain fewer than 1,000 inhabitants.

Elements of the estimated growth operators proved to be of improbably

large magnitude, or to include negative coefficients over the entire

smoothing domain. The three cities that comprise the core of the

SMSA (Springfield, Holyoke, Chicopee) also yielded erratic results.

However, for the thirteen towns about the central city that comprise

the suburban ring (see Figure 13), the iterative, restricted least

squares estimator gave uniformly good results.

The 1960 census data includes a statistic for the 1955 place

of residence (of persons five years or older in 1960). Respondents

residing in SMSA's indicated "same" or "different house" as their

1955 place of residence, and, if different, one of the following

categories; "Central City of the SMSA" (Category I), "Other part of

the SMSA (II), "outside the SMSA" (III) or "abroad" (IV). .A respondent

who changed his residence within the same town is thus classified

together with those who entered from other parts of the SMSA (i.e.

category II). The total number of in-migrants during the period

1955-1960 can thus only be given as a range; The lower bound assumes

that all in category II changed residence within the town, the higher

bound assumes that all in category II entered the town from other
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AGAWAM

EASTHAMPTON

EAST LONGMEADOW

GRANBY

HAMPDEN

LONGMEADOW

LUDLOW

SOUTH HADLEY

SOUTHAMPTON

SOUTHWICK

WESTFIELD

WEST SPRING FIELD

WILBRAHAM -

Net
migration
1950-1960

' Vital
stat-
istics

1

3,574

164

4,242

1,689

786

3,564

3,402

2,777

588

1,331

2,490

1,253

2,693

Net
migration
1950-1960

..ALG. I

2

3,841

391 ,

4,710

1,905

883

4,036

3,682

3,333

215

' 187

8,951

1,464'

Total
inmi grants
1955-1960

As per 1960
Census

3

3,406-4,492

*

2,678-3,533

*

859-995

3,035-4,268

2,456-4,601

*

*

*

3,646-9,467

4,020-9,081

1,890-2,828

Total
inmi grants
1955-1960

ALG. I

it

4,275

5,466

4,069

5,776

1,191

7,181

5,272

3,661

355

598

12,160

3,836

Total
out mi grants
1955-1960

ALG. I

5

2,527

5,316

1,880

5,039

622

5,018

3,648

2,046

251

381

8,643

3,181

Table 8 Results for two-region systems, Algorithm I
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AGAWAM

EASTHAMPTON

EAST LONGMEACOW

GRANBY

HAMPDEN

LONGMEADOW

LUDLOW

SOUTH HADLEY

SOUTHAMPTON

SOUTHWICK

WESTFIELD

WEST SPRINGFIELD

WILBRAHAM

Net
nigration
L950-1960

Vital
stat-
istics

1

3,574

164

4,242

1,689

786

3,564

3,402

2,777

588

1,331

2,490

1,253

2,693

Net
migration
1950-1960

ALG. II

2

3,509

167

4,288

1,717

786

3,689

3,518

2,794

588

1,350

1,255

1,138

2,786

Total
inmi grants
1955-1960

As per 1960
Census

3

3,406-4,492

*

2,678-3,533

*

859-995

3,035-4,268

2,456-4,601

*

*

*

3,646-9,467

4,020-9,081

1,890-2,828

Total
inmi grants
1955-1960

ALG. II

k

3,070

1,323

2,937

1,799

764

2,443

4,016

2,406

579

1,147

4,017

4,023

1,904

Total
outmi grants
1955-1960

ALG. II

5

1,365

1,243

846

1,090

403

600

2,480

1,035

300

504

3,486

3,507

533

Table 9 Results for two-region systems, Algorithm II
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parts of the SMSA. This range does permit some evaluation of the

numerically estimated results, and is given in column 3 of Tables 8

and 9.

Tables 8 and 9 show the results for two-region systems in

double precision arithmetic. Agreement of columns 4 and 5 is

excellent; it must be remembered that column 5 represents the 1955-

1960 estimate as obtained from the average rate over the 10-year

interval 1950-1960.

We note also that Algorithm I yields good estimates of net

migration over the 10-year interval as compared to the vital statistics

method, which contains some element of error (see Footnote 7). Since

Algorithm II uses the vital statistics method in evaluating the

objective function, it will inherently yield comparable net migration

estimates at the optimum. It does appear that Algorithm I gives

consistently higher estimates for in- and outmigrations than

Algorithm II.

Results for three-region systems. By constraining the

iterative algorithms to that smoothing domain for which the resultant

estimated coefficients are positive, the principal computational

difficulty was eliminated. Nevertheless, the results are somewhat

unsatisfactory. Table 10 shows the estimated ratios of inmigrants

from Hampden County (t;o a given town) to inmigrants from areas out-

side Hampden County. These ratios are obtained from the third row

of the estimated growth operator for the three-region systems

Massachusetts-Hampden County-Suburban town. The results are erratic,
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Estimated ratio of inmigrants from
other parts of Hampden County to J

inmigrants from outside Hampden
County

Agawam

Easthampton

East Longmeadow

Granby

Hampden

Longraeadow

Ludlow

South Hadley

Southampton

Southwick

West fie Id

West Springfield

Wilbraham

N.C, = no convergence

Algorithm
I

26.0

1.4

17.0

N.C

0.07

1.7

0.85

0.64

0.64

4.5

1.33

0.75

0,26

within the

Algorithm Census
II estimate

5.6 1.7 - 2.6

0.37

1.8 1.4 - 2.1

0.66

11.4 0.9 - 1.2

17.0 0:9 - 1.8

0.4 1.0 - 2.8

12.0

. 0.14

0.1

0.28 0.4 - 2.4

0.62 1.2 - 3.7 .

N.C 1.5 - 3.6

specified smoothing domain

Table 10 Estimated ratios of inmigrants for selected
three-region systems.
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Estimated ratio, pf out-
migrants (see text)

Agawam

Has th amp ton

East Longmeadow

Granby

Hampden

Longmeadow

Ludlow

South Hadley

Southampton

Southwick

Westfield

West Springfield

Wilbraham

12.0

3.1

12.5

N.C

N.C.

45.0

1.8

15.0

2.6

7.2

0.6

7.5

5.3

N.C. = No convergence within specified
smoothing domain

Table!11 Estimated ratios of outmigrants
for selected three-region systems
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and in only isolated cases comparable with the ratios estimated from
g

the Census. Table 11 shows the ratio of outmigrants (from a given

town) to areas outside Hampden County to outmigrants to other parts

of Hampden County, obtained from the third row of the estimated

growth operator for the three-region systems Massachusetts-Hampden

County-Suburban town. Again the results are erratic, and in some

cases of improbable magnitude.

It may be concluded that the extension of the computational

model to three-region systems requires the use of additional

symptomatic indicators of intercensal population, since the results

obtained by using only vital statistics appear unsatisfactory.

Nevertheless, the quality of the results for two-region systems would

justify additional research into multi-region systems using further

symptomatic variables. The two-region formulation suffices for the

stochastic population projection models of succeeding chapters;

anticipated future refinements to such projection models will

undoubtedly.demand a more detailed quantification of intra- and

interregional migration streams.

9
The census estimates can again only be specified as a

range; see previous section.
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C H A P T E'R V I

TIME SERIES ANALYSIS OF
BIRTH, DEATH AND MIGRATION RATES

Birth and Death Rates

Autoregressive formulation. Figures 17 and 18 show birth

and death rates for a selection of communities in the Lower Pioneer

Valley Regional Planning District. Births and deaths were obtained

from the allocated vital statistics records published by the

'Commonwealth of Massachusetts, and the intercensal population is

interpolated by the method of Chapter V.

In view of the apparent periodicities, one line of approach

to a stochastic formulation of vital rates would be a Fourier Series

decomposition and subsequent analysis by spectral and cross-spectral

methods after application of an appropriate filter to eliminate trend.

A recent paper by Coale (51) has explored this approach in the

analysis of fertility cycles in Sweden. However, the underlying

assumption that fertility variations are indeed cyclical becomes

questionable when dealing with small open populations. For variations

in mortality a cyclical decomposition would seem equally inappropriate

At a local level, variations in vital rates are more likely to occur

in response to differentials in socio-economic composition and rapid

changes in age structure resulting from age-selective migration

movements than in sympathy.with cycles on a national level.
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Inspection of Figures 17 and 18 suggests an inverse relation

between the size of a community or region and the magnitude of the

fluctuations about the mean. If the series is regarded as stationary

over limited time periods, then a convenient formulation of the

underlying stochastic process is the n-th order linear autoregressive

model

6t = a_ •»- a, p, + a.1 • M., M 1 • ••»-•« h* • • •
i o 11 2 i

>1 ' .t-2 . . ' rt-n

where a. = autoregression coefficients

u. = random termsi

3. = birth rate of'region i at time t

6. = death rate of region i at time t .

This formulation accounts for the persistence of deviations from trend,

according to the magnitude of the serial correlation coefficients.

By fitting.such a relation to observed time, series, it is then possible

to obtain a quantitative relation between the magnitude of the random

components and serial correlations and population size. However, since

the series may not be strictly stationary over the full period

considered, the estimated mean may vary accordingly. For example,

computations for the series 1940-1965 and 1950-1965 show significant

differences in the estimated mean, but also show insignificant

differences in the subsequent relationships between the magnitude of

the random term and serial correlation coefficients and population size.
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Since the means do vary with the length of record considered,

it is imprudent to assume stationarity into the future. The sample

paths of Figures 17 and 18 (representing one possible manifestation of

the process) are therefore for illustrative purposes only. However,

we may utilize the estimated means for a particular time period in a

cross-section analysis in order to explain variations in those means

in terms of pertinent socio-economic and demographic variables.

Statistical problems. As we have noted in Chapter III,

application of least squares to an autoregressive time series may

result in significant small sample bias. The Monte Carlo study by

Orcut and Winokur (52) has demonstrated, however, that standard least

squares prediction is no less optimal than some of the corrected

estimators that have been suggested previously (see for example

Marriott and Pope (53) or Quenouille (54)). The earlier study by Orcut

and Cochrane (55) showed that in the presence of autocorrelated

residuals, the assumptions underlying the Gauss-Markov theorem break

down completely (Goldberger (27)), yielding estimators that are

inconsistent. Unfortunately, the Durbin-Watson test for the detection

of autocorrelated regression residuals has low power in an auto-

regressive model, and the distributions of non-parametric tests

available for testing non-randomness in a series have not yet been

derived for the case of residuals from a fitted regression. In view

of the excellence of fit of the estimated parameters on the set of

variables for which we have good prior grounds as being explanatory
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Births

.

Springfield
Holyoke
Chicopee

• Agawam
Amherst

r Belchertown
• Easthampton
• East Longmeadow

Granby
: Longmeadow
Ludlow
Northampton

' South Hadley
Southwick
W.Springfield
Westfield
Wilbraham

Blandford
Chester
Granville
Hadley
H amp den
Hunt in gt on
Middlefield
Montgomery
Pelham
Russel
Southampton
Tolland
Westhampton

Hampden County

Massachusetts

3

23.23
21.86
25.15

19.36
19.48
13.14
19.93
17.51
22.15
11.95
20.97
17.48
22.03
23.07
21.42
21.13
17.77

20.72
18.33 -
19.97
20.99
17.61
20.45
19.26
19.33
18.61
21.49

PCS)
0.72
0.77*
0.83*

0.64*
0.65*
0.51*
0.66*
0.59*
0.68*
0.15
0.69*
0.77*
O.S3*
0.75*
0.76*
0.74*
0.26

0.36*
0.11
0.38*
0.32*
0.14
0.25
0.02
0.04
0.05
0.14

oCB)

1.41
1.81
1.85

1.98
2.64
2.46
2.28
2.97
4.69
1.88
2.12
1.31
2.07
3.55
1.98
1.88
3.05

4.78
4.69
6.65
3.77
5.12
5.00
8.10
8.67
6.11
5.20

17.58 8.19 3.08
10.69 -0.13 10.37
23.61

22.06

21.25

(*) denotes significance
i •-— •• — — — . . — . — ••

0.19

0.79*

0.80*

(reject

7.51

1.74

1.19

null

6

11.26
12.87
8.06

7.24
8.71
7.71
9.66
7.76
6.88
7.49
7.27
10.25
8.43
7.89
8,88
10.44
7.72

11.07
12.76
12.67
8.53
8.38
13.21
10.58
8.67
10.18
10.33
8.72
10.04
9.72

iO.23

10.92

Deaths

PC63

0.66*
0.37*
0.67*

0.46*
0.47*
0.33
0.01
0.59*
0.24
-0.13
0.09
0.26
0.31
0.52*
0.07
-0.19
0.41*

0.02
0.22
0.38*
0.31
0.19
0.08
0.06
-0.02
0.05
-0.19
0.23
0.13
-0.06

0.34*

0.67*

hypothesis) at

.

0(6)

0.49
0.66
0.67

1.14
1.66
1.43
1.02
1.47
2.36
1.37
0.80
0.79
1.16
2.25
0.75
0.80
1.73

4.50
3.82
3.75
2.19
3.23
2.73
5.76
7.05
4.56
2.60
2.97
10.86
5.56

0.32

0.30

a=0.05

Table 12 First-order autoregressive parameters for birth and
death rates for communities in the LPVRPD over the
interval 1940-1965
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Births

Springfield
Hoi yoke
Chicopee

Agawam
Amherst
Belchertown
Easthampton
East Longmeadow
Granby
Longmeadow
Ludlow
Northampton
South Hadley
Southwick

0"

24.33
21.96
30.10

29.2
25-7
17.6
22.5
30.8
55.5
17.8
33.1
18.7
31.4
27.9

West Springfield25.7
Westfield 25.6
Wilbraham

Bland ford
Chester
Granville
Hadley
Hampden
Huntington
Middlefield
Montgomery
Pelham
Russel
Southampton
Toll and
Westhampton

Hampden County

Massachusetts

29.4

27.3
19.2
26.5
24.7
32.6
23.28
26.59
34.5
27.8
25.45
28.1
12.73
30.4

25.5

23.4

P

0
0
0

0
0
-0
0
0
0
0
0
0
0
0
0
0
0

0
-0
0
-0
0
-0
0
0
0
-0
0
-0
0

0

0

(*) denotes significance

C3)

.53*

.13

.71*

.78*

.58*

.15

.56*

.85*

.31

.54*

.78*

.48*

.82*

.96*

.68*

.78*

.22

.29

.32

.52*

.01

.55*

.14

.12

.55*

.11

.36

.32

.24

.18

.51*

.83*

a

1
1
1

2
2
2
2
6
10
2
2
1
3
5
1
1
4

4
4
6
4
9
5
10
14
6
4
5
10
7

1

0

(reject

cej
.5
.25
.6

.8

.75

.41

.1

.4

.0

.7

.7

.1

.2

.9

.54

.31

.5

.60

.50

.70

.25

.20

.00

.20

.00

.87

.20

.20

.70

.90

.74

.51

null

11
12
9

10
9
8
10
12
13
10
9
10
11
11
10
12
11

13
12
13
10
11
14
14
15
11
10
11
8
11

11

11

6

.8

.88

.27

.20

.86

.62

.5

.5

.1

.42

.88

.54

.53

.86

.39

.06

.65

.04

.55

.46

.10

.81

.3

.4
,77
.35
.57
.75
.9
.21

.39

.69

Deaths

P

0
0
0

0
0
0
-0
0
-0
-0
0
0
0
0
-0
-0
-0

0
0
0
0
-0
0
0
0
-0
-0
-0
0
0

0

-0

hypothesis)

C6).

.34

.15

.24

.05

.58*

.18

.23

.38

.11

.03

.49*

.35

.18

.09

.18

.03

.06

.22

.14

.32

.49*

.28

.19

.20

.31

.11

.07

.42*

.09

.42*

.33

.03

at

y\

0
0
0

1
1
1
1
1
4
2
1
1
1
3
0
1
2

5
4
4
2
3
3
5
12
0
1
3
8
4

0

0

a=0.

CO

.4

.62

.43

.41

.05

.35

.24

.93

.1

.3

.18

.0

.1

.2

.66

.08

.1

.1

.3

.05

.05

.6

.2

.8

.7

.2

.78

.77

.7

.8

.36

.05

05

Table I3 First-order autoregressive parameters for birth- and
death rates for communities in the LPVRPD over the
interval 1950-1965
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(for example the magnitude of the random term as .a function of

population size), significant bias, if any, appears to be uniform over

the entire set of communities. The numerical results are presented

fully cognizant of their limitations.

Serial correlation and the random term. Both first and

second order schemes were fitted to the vital rates of all thirty

towns in the Lower Pioneer Valley Regional Planning District by use of

least squares. Since the results of the second order scheme were not

demonstrably better than those of the first order scheme, attention was

focused on the latter.

The first order model was fitted to two series, 1940-1965 and

1950-1965, and the resultant parameters are tabulated on Tables 12

and 13. In view of the rise in birth rates in the late Forties, the

estimated means were significantly higher for the latter series.

There were also fewer significant serial correlations for the 15-year

series (20 as against 31 for the 25-year series), which again reflects

the desirability of utilizing as long a series as possible.

By an analogous argument to that developed in Chapter IV for

serially correlated migration rates, the mean level of the first-order

process

is given by

f t-i
: = a + a. B.•i o 1 i

The estimated coefficients for the second-order scheme are
tabulated in Appendix C.
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f t - — o f i - a " ) ' . [ 6 . 3 ]
i o 1

and the serial correlation and random term variance by

P . C S ) • *! ^00 - u'/Lv* Cl - aJ2))CO'-S) j . . . [ 6.4 ]

Regressing the estimated serial correlation coefficients

and the estimated variance of the random term on average population

over the interval yielded

PiC8) = 0.007 p°'
278 R2 = 0.63 . '. ' [ 6.5 ]

Pi(S) = 0.015 p°'443 R2 = 0.58 [ 6.6 ]

a . ( B ) = 98.4 p-°'467 R2 = 0.97 [ 6 . 7 ]

a . (6 ) = 47.1 p-°-313 R2 = 0.91 ' I 6.8 ]

A.

where p-(S) = estimated birthrate serial correlation coefficient,
region i

p. (<$) = estimated deathrate serial correlation coefficient,
region i

o.(£) = standard deviation, random component of birthrate
process, region i

o.(6) = standard deviation,' random component of deathrate
process, region i ,

p = average population over the interval 1940-1965

Mean birth and death rates. The mean levels of the auto-

regressive processes C1"6^11 birth and death rates) were analysed in

terms of regional deviations. It was hypothesized that deviations

from the regional means could be explained in terms of deviations in

explanatory variables, especially differentials in age structure and
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income. The significance of this type of formulation will become

apparent in Chapter VII where the here-established relationships

will be used for projection purposes. Introducing the notation

A.

3. = estimated mean birth rate, town i

A

ST = estimated mean birth rate for entire region (LPVRPD)

s\

6. = estimated mean death rate, town i

f\

5 = estimated mean death rate, entire region

P..1 -= fraction of individuals in j-th age group, town i

P.T = fraction of individuals in j-th age group, entire region

Q. = per household income, town i

QT = per household income, entire region

The age groups are defined as follows:

j - 1 0-14 years of age

j = 2 15-24 years of age

j = 3 25-44 years of age

j = 4 45-65 years of age

j = 5 greater than 65 years of age

Regressing the mean birth and death rates on P . . , j = 1, 2, ... 5 and Q.^

resulted in the following relationships (where insignificant explanatory

variables have been omitted):
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V' P ' Q.-'
_! a Ji ._li. Ji [ 6.9 ]

6T P5T P4T ^T

R2 = 0.85

0.17 -0.821
F2i M [ 6.10 ]

P2T

R2 = 0.97

Conclusions. Eq.[ 6.5 ] - [ 6.8 •] confirm the relationship

between population size and random term and serial correlation coefficient

of the autoregressive model for vital rates. The dependence of deviation

from the regional deathrate in terms of differential age structure and

income is not unexpected, with the younger age groups not significant in

the corresponding regression equation (Eq.[ 6.9 ]). The significant

variables in Eq.[ 6.10 ] that explain deviations from the regional birth-

rate are also consistent with expectations.



99

Migration Rates

Formulation; " Several regression models of interstate

migration have appeared in recent years (see for example Rogers (56),

Lowry (57) or Greenwood (58)); However, the explanatory variables in the

context of interstate or inter SEA (State Economic Area) flows, for example

unemployment rates, income and existing migrant stock at the place of

destination, climate, education, are of a different nature than those

applicable to intra-regional migrations within an urban area. The

problem in our context is to estimate the resulting distribution of

residential location given some rates of in- and outmigration for the

region as a whole. The explanatory variables used in the multiple

regressions to establish these latter relationships are listed on Table

14. Again the analysis is in terms of deviations from the regional mean,

since we seek to explain differentials in growth and migration rates

in terms of differentials in a set of explanatory variables that are less

difficult to project into the future.

Results. The results of regressing the 3 dependent variables

of Table 14 on the entire set of independent variables given on Table

14 are shown on Table 15, where the insignificant variables are again

omitted. A positive exponent indicates a positive contribution of the

corresponding independent variable to the growth or migration rate, a

negative exponent indicates an inverse relationship.

Some observations on the coefficients of Eq.[ 6.11 ] -

[6.13 ] are in order. It is of interest to note that sewer access
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Independent (Explanatory) Variables

X Distance to the central city of the SMSA, miles

X Fraction of population without sewer access, 1965

X Fraction of population without public water supply

X Single family housing as a fraction of total residential
land use, 1965

X Vacant acres, 1965
O

X^ Acres of water bodies, wetlands, forest, 1965o

X Year of enactment of first zoning law

X0 Taxrate, 1965 (adjusted for variable assessment ratio)
o

X Net residential density, 1965

X Gross population density, 1965

• Dependent Variables

j Y Total inmigrants, 1955-1960 (as obtained from Algorithm II,
• chapter IV)
i
! Y Total outmigrants, 1955-1960 (as obtained from Algorithm II, j
I chapter IV)
i

; Y Net population increase, 1955-1965

Table 14 Definition of variables for the multiple regression
models of growth and migration rates.
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Table 15 Estimated growth relationships for 13 suburban towns

Relative Growth Rates

v
I _, .

3T

Y -0.13 Y 6.69
A_ . A . .

2T 4T

„ 0.52 Y 0.99
X5i X9i

5T 9T

6.11 ]

Sewer
access

: SF
housing

Vacant
Acres

Residential
Density

R =0.87

Relative inmigration Rates

= 0.36 X2i
-0.12 4.75 0.33 0.23

IT 2T '

4i

4T

Si

5T

6i

6T

X9i
1.34

9T

Sewer SF
access housing

Vacant Forest , Resident! al
acres wetlands density

[ 6.12 ]

R = 0.97

Relative Outmigration Rates

2T

, 0.59
-7.09

4T

0.27 0.31

5T

6i

6T

X7i
0.56

7T

Distance SF Vacant Forest, Zoning
to CC housing Acres Wetlands Law

R = 0.95

Taxrate Res.density
Y 1.46 v 0.66
X8i X9i

. [ 6.13

9T
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appears as a positive inducement to both overall growth and to
2

inmigration. As expected, the character of residential neighbourhoods

as measured by the fraction of single family homes is significant

as an inducement for inmigration, but equally significant as a

determinant for out-migration ( negative coefficient for X. in

Eq.[ 6.13 ]). In part, this reflects the fact that residence times

in single family homes are of greater duration than in multi-family

housing, and confirms the intuitive and often invoked reasoning

that appartment complexes are detrimental to the"stability" of a

town. A higher than average taxrate apparently acts as an. incentive

for out-migration, but not as a disincentive for in-migration, since

this variable is not significant in, Eq.[ 6.12 ]. The presence of

X ( fraction of total vacant land in' the i-th region ) in Eq.[ 6.11 ]
O

and [6.12 ] is anticipated, reflecting the dependence of residential

growth on construction opportunities. Of intriguing interest is the

presence of X_ in the out-migration equation. A low value of X is

indicative of a long-established zoning regulation; the positive coeff-

icient is thus indicative of an incentive to leave a relatively poorly

planned community.

The reader is reminded that the particular set of variables

found significant, and the magnitude and sign of their associated

coefficients are specific to the set of towns here examined. These

equations will be utilized in the following chapter for population

projections of the same set of towns. Application of the methodology

developed in these chapters to a different region would require
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re-estimation of these equations.

Since many of the variables of Table 14 are not available

on a time series basis ( for the LPVRPD there exists only the one

land-use study prepared in 1965 ), one is limited to a single cross-

section analysis to establish the growth and migration correlates

of the type here considered. That the dependence of migration rates

on particular variables may change in future times is fully recognized.

Nevertheless, even a single cross-section analysis represents a signifi-

cant advance over intuitive guesswork as to the probable future

development of growth rates.

2
In order to avoid zeros in the logarithmic transformation

of the independent variables, variables X and X, needed to be formulated
as the fraction without sewer access and public water supply; A negative
regression coefficient implies a positive relation to the fraction
with access.
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CHAPTER VII

POPULATION PROJECTIONS FOR LOCAL AREAS

Applications of stochastic process theory. A central theme

of this study has been the stochastic nature of demographic events and

the emphasis on migration as a principal determinant of population

change in a local area. A review of the literature of stochastic

process theory, however, reveals relatively little work on human

population growth subject to migration.

Several authors have attempted to extend the classical

birth-and-death models of Yule (59) and Kolmogorov (6Q~) to incorporate

migration. In general, explicit mathematical expressions for the

stochastic mean can be obtained by the use of generating function

techniques for the solution of the governing Kolmogorov differential

equations. In certain cases, explicit expressions for the variance

and individual state probabilities have also been obtained.

For example, the mean and variance of a stochastic birth-

and death process are given by

E{X(t)} = X(0) e(B

where 3 = infinitesimal birth rate

6 = infinitesimal death rate

X(0) = number of individuals in system at time zero

X(t) = number of individuals in system at time t
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We note that the stochastic mean is equal to the corresponding

deterministic value. Introduction of a constant inmigration rate y
2

results in the following modification to Eq.[ 7.1 ] (Bailey (61)) :

E{X(t)> = 3 - { e ' - 1) + X(0) e- . . . [ 7.2

As soon as we permit births and deaths to become functions of time,

solutions for the moments involve the evaluation of integral equations

Bailey (61) shows that for the simple non -homogenous birth-and-death

process

E{X(t)} = X(o) e~ptt5

P(t) = {6CO - 8 CO) dt . ........ [ 7.3 ]
'o

De Cani (62) considered the simultaneous growth of two populations

linked by migration. Again using the moment generating function tech-

nique, several pages of "brute force" mathematics yield for the

expected value

t> = ~ ° t x o)) e(3r6i}t

6 -„ P2)t
• • [ 7.4 ]

The corresponding deterministic formulation is given by

4M*I = (3-6) X(t)
f6-61tfor which integration yields the well known result X(t}=X(0)e J

?In the literature of stochastic processes, the symbols X and
U are conventional for birth and death rates, respectively, and m is
conventional for migration rates. For consistency of notation, however,
we shall continue to designate birth, death and migration rates as S,6
and p, respectively.
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where y and y_ represent the migration rates from region 1 to region 2

and region 2 to region 1 respectively. Under the simplifying assumption

a = 6 - 6

De Cani obtained for the variance the expression

X fOI + X C01
w rv r«.M 1 2 2at r3+6 3+6+4 -4pt
V a r ( X C t ) } - 5

 e ^ + 27^4^1 e
2a 2(a-4iO

a - 4,5 - t
(a-4y)

2(a-p)t

.
J

.......

from which the complexity of the corresponding non-homogenous case

can be anticipated. De Cani's two-population model appears to be

the only multi-dimensional process described in the literature set in

the context of interregional migration, although multi-dimensional

models have attained formidable erudition in genetics.

Adke and Moyal (63) developed a model of population growth

whose individuals are subject to diffusion along a line in addition

to undergoiung births and deaths. Given an initial population at the

origin, the expression for the mean is asymptotically Gaussian. Adke

(64) generalized this result to the non-homogenous case. In a more recent

development, motivated by the implications for cancer research, Bailey

(65) considered the growth of a set of populations each located at the
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nodes of a square lattice, each subject to births, deaths and migrations

to and from adjacent nodes. The first moment is given by

) ) [7.6]
K x.

where X. . (t) is the population at points i,j of the lattice at time t

and I. is a Bessel function of the first kind. For the special case

of a single initial colony of size X (0) at the origin at time t=0,a

..(t)} = Xa(0) e . ! ) I j C o - - - [ 7.7 ]

In summary it appears that the present results of stochastic

process theory offer little assistance to the planner upon whom falls

the burden of a quantitative population projection. The analytical

complexities of the general multi-dimensional non-homogenous process

that is required to adequately describe human population growth preclude,

at present, direct application. Nevertheless, available results do

afford considerable insight to the nature of stochastic growth processes .
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Matrix Methods. In the study of population dynamics

increasing use ha been made of the basic matrix formulation

t+1w = $ w

(k x 1) (k x k) (k x 1)

[ 7.8 ]

to describe a population distribution at two succeeding points in

time. Formulated originally by Leslie (66), and expanded by Leslie (67),

Keyfitz (68), Pollard (69), Lopez (70) and Sykes (71), among others,

the k components of w have normally represented the number of individuals

in each of the quinquennial age groups 0-4, 5-9, ... etc. The (k x k)

matrix $ characterises the transformation from w to w . $ is thus

a matrix of survival ratios .s. . representing the proportion of

individuals of the i-th age group who survive to become members of the

(i+l)-st age group at the end of the unit time period, and of birth

rates 3., representing the number of births that survive to the end of

the time interval born to the i-th child bearing age group. Thus

$ =

1S2

2S3

0 0 0 0 • n-1 n 0

. . [ 7.9 ]

It is evident that this matrix model may be used as a projection device,

and mathematical erudition has not been lacking in the development of
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such models. However, they are generally restricted in application

to closed populations, undisturbed by migration. This restriction

is no hindrance to the study of national populations, for which

the migration component- of growth may either be neglected (at least

numerically, if not by social or occupational group) , or where political

constraints (immigration quotas etc.) permit realistic estimates of

future migration.

Sykes (71) appears to contain the first analysis of the

cohort-survival matrix model (Eq. [ 7.8 ]) as a stochastic process.

In particular he considered the two models

w = $ w +u .......... ••[ 7.10 ]

which is analogous to the estimating equation [ 3.8 ] of Chapter III,

and

w = {0 + A} w

E{At) = 0

7-u

which is in essence the model of Chapter IV, and derived analytically

expressions for the mean and variance of the processes. As we have

seen in earlier sections, the matrix formulation [ 7.8 ] was interpreted

by Rogers as an interregional process, in which the elements of $

represent no longer survival rates but interregional migration rates.

The interregional population projections for the State Economic Areas of

California (Rogers (57)) utilized Eq.[ 7.8 ] in this latter context.

The analytical results obtained by Sykes (71) are not specific to the
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cohort-survival interpretation of the matrix model, and could be

utilized in an interregional context. We have postulated, however,

that the elements of r are serially correlated, and therefore the

results of the process [ 7.11 ] cannot be directly utilized. The

previous section has demonstrated that the mathematical treatment of

non-homogenous stochastic processes is quite complex, for which analytical

solutions are obtained at best with difficulty. We turn therefore to

a simultaion approach that permits full consideration of the stochastic

nature of demographic events in the framework of an interregional

population projection without the complexities of analytical solutions.
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Stochastic Simulation. .'With the ̂widespread availability

of time-sharing computer facilities, a stochastic simulation method-

ology provides a feasible alternative to the analytical approach for

the evaluation of the projection moments by a regional planning agency,

or their consulting engineer. Shubik (73) has defined simulation as

follows: • '

"... A simulation of a system or organism is the
operation of a model or simulator which is a
representation of that system or organism. The
model is amenable to manipulations which would be
impossible, too expensive or impractical to perform
on the entity it portrays."

In the context of this study, the definition of simulation

will be restricted to experiments on mathematical models. Analog and

physical models are herein excluded.

Simulation models may be divided into two broad categories,

deterministic and stochastic. Deterministic models have one predictable

outcome for a given specified decision-situation, whereas stochastic

models have a corresponding distribution of possible outcomes resulting

from the inclusion of stochastic variables. This latter category is

most commonly referred to in the literature as "Monte Carlo" simultaion,

2
though some authors have preferred the term "statistical simulation".

3
Another useful distinction is between dynamic and stochastic simulation.

For example Fiering (38) or Hammersley and Handscomb (74)
2For example-Eldredge (75) or Ehrenfeld and Ben-tuvia (76)
**A good introduction to computer simulation modelling is

contained in Naylor et al. (77.)
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A static model is time-invariant, whereas a dynamic model includes
4

time as an independent variable.

The essential components of a stochastic simulation model

comprise 1. A set of endogenous variables, specified entirely by

the model itself.

2. A set of exogenous variables, specified a priori by the

decision-maker. In the typical econometric model, such variables are

those subject to policy decisions (government expenditure, taxation

levels, etc.). In the demographic model, there exist also quasi-

exogenous variables such as terminal regional fertility and mortality;

these variables must be specified a priori, yet the planner has no direct

control. Professional judgement will indicate what the possible range

of such variables is liekly to be, and the results of sensitivity analyses

will demonstrate their relative importance on the outcome.

3. A set of coefficients (or parameters), also specified

a priori. The constants in Eq.[ 6.7 ] relating the magnitude of the

random component of the birth and death processes to population size

are examples of such coefficients.

4. A set of equations that describe the interrelationships

between exogenous and endogenous variables, through time.

Smith's model of the wastewater treatment plant £19) is an
example of a static, deterministic simulation, whereas Fiering's stream-
flow models are dynamic and stochastic (38). Forrester's model of a
hypothetical urban system (78) and the Susquehanna River Basin Model
(Hamilton et al., 79) are examples of dynamic, deterministic models.
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In-the illustrative-development of the projection simulation

model, we shall examine initially a closed single-region model subject

only to births and deaths [Model A). Augmentation of Model A by net

migrations represents the simplest viable projection technique (Model B).

Finally, Model C will develop the full interregional projection model.
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Stochastic Simulation Projections

Projection Model A. Model A, summarized in Table 16 and

Figure 19, represents the basic birth-and-death sector for a given town,

and will be incorporated into the multi-region models of subsequent

sections. Population change by migration is temporarily excluded for

the purpose of studying the basic properties of stochastic simulation

projections,

A sample projection is defined by one application of the

equations listed on Table 16, through time, with one particular drawing

of random terms for the random variables. This procedure is repeated

N times (N=sample size), each sample dependent on a new and different

drawing of random terms, thus generating a set of projection curves and

defining a probability distribution at each time point. From this

distribution of sample values projection moments (mean, variance etc.) may

be evaluated. A set of sample projections is illustrated on Figure 20, an

and the distribution of sample values shown on Figure 21.

Introducing the notation

~tx.. = j-th sample projection for region i, time t

At 1 *t
x. = TT £ x. . = expected projection for region i, time t

. , ^ based on a sample size N C-sample mean) .

•f" i * t *t~ fj*\
s.Cx) = rr J (x.. - x.) J = standard deviation of sample out-iv N L ^ 11 \J ... r

J comes, region i, time t
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EQUATIONS

t+1 t

S* = @ + P
tCB) C3t"1 - 3) + y* a*Ce) [1 - p1^) C2)]exp 0.5

5t = T + p t(6) C^"1 - 6) + w1 0*05) [1 - p tC6)C2}]exp 0.5

= RND(0,1) w = RND(0,1)

= P°(6) [ -

a t CB) = a°(e) [ o lexpCc)

a t(6) = o

EXOGENOUS VARIABLES

x = base year population

3 = mean birthrate

8 = base year birthrate

5 = mean deathrate

6 = base year deathrate

PARAMETERS

a,b,c,d empirically determined coefficients (see Eq.[ 6.5 - 6.8 ])

ENDOGENOUS VARIABLES

x = population,, time period t

6 ,6 = birth and death rates, time period t

p (3), p ($)= serial correlation coefficients, time period t

° C3)> o (6)= standard deviation of random terms, period t

Table 16 : Projection Model A - Summary of Equations
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POPULATION PROJECTION
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POPULATION PROJECTION
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• ' t t *t t
we may define a "high" and "low" projection as x. +• TTS.(X), x. - TTS.[X)

respectively, where IT is such that the probability of the actual future

population lying beyond these limits is fl. On the assumption that the

sample outcomes are distributed normally, we shall take ft = 0.05 and

TT = 1.96. If the model is an accurate representation of reality, one

would expect the actual future population to fall within these limits

with probability 0.95. In the projection of Figure 22 for the town of

Ludlow, we hypothesize that there exists a 1 in 20 chance that the

actual 1980 population is greater than 20440 or smaller than 18740.

A useful measure is the relative projection range, defined

as R 2 TT s . (x)

X. X.1 1

A comparison of the relative projection range for 1980 between Blandford

" 1 QSd 1 QRfl 1 QRfl
(x = 980, R = 0.164) and Ludlow (IT = 0.087) serves to

illustrate the dependence of the projection variability on absolute

population size.

Projection model B. The simplest modification to the birth

and death process of Model A is to add a net migration component. In

Massachusetts, net migration figures are available from Census data

at 5 year intervals. Let 4.00 De the number of net migrants during

the k-year interval commencing in year j for region i. Then we may

define an average rate over the k-year interval. as
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Exogenous variables:

X. = mean net migration rate

s.(A) = standard deviation of net migration rates

Endogenous Variable

X. = net migration rate in period t

to obtain the simplest viable projection model.

Application of this stochastic simulation projection to towns

in the study region permits some interesting comparisons. Table 17 compares

the 1980 probabilistic projection range R (column 1) with the range

estimated by the planning consultant (consultant's "high" minus "low"

projection"). Given that the stochastic model is an accurate represent-

ation of reality, and that the consultant's most probable projection lies

midway in the stated range, we may then compute the probability that the

actual future population will fall within the limts specified by the

consultant. This probability is given in column 3, and from the low

values it is evident that such "high" and "low" projections are not

truly indicative of actual variability. This is not unanticipated since

they represent the particular deterministic projections that happened

to yield the highest and lowest estimates respectively.

At the time of writing, preliminary census figures are

available for some of the towns in the study region. Table 18 shows

a comparison of the 1970 Model B projections 'and the LPVRPC planning

projections with the preliminary Census figures. The figures in
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—
i 5 , j j+5w + w

where w: = population of region i in census year j

X~ = average annual net migration rate over the interval

Suppose that p consecutive estimates of net migration rates are

available. Then the mean anual rate over the (5 x p)-year interval

is given by

X. = i f X? ............ [ 7.14 ]
1 P j.l 1

with standard deviation

P

p I A ? C 2 ) - P ^2)) ...... E 7.15.f;. i r i y L

and thus we may generate a sequence of time-homogenous migration rates

x5 = X. + vl s. m .......... [ 7.16 1i i iv •* L J

where vt = RND(0,1)

Model A [see Table 16) is thus altered and augmented by

Equations :

X? = X. + v1 s. m•*

v = RNDCO,!)

xt+1 - x? Cl + e* - 6* + X1
i i *• i i + i
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Blandford

Pelham

Bel chert own

Longmeadow

Ludlow

Model Bl

(1)

420

650

2220

4100

9760

Consultant

(2)

70

90

630

1700

2000

(3)

0.25

0.23

0.41

0.55

0.31

Table 17 : Comparison of 1980 projection ranges
(see text for explanation of columns)
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parentheses represent the difference to the census figure expressed

as a percentage of this figure.

We note that the stochastic figure is nearer the census

result than the consultant's estimate in 12 of 16 cases, a sufficient

indication of superior prediction performance. In the 4 cases that

the consultant was nearer (Pelham, Monson, E.Longmeadow and Ludlow),

the differences are much less than for those where the stochastic method

proved closer (see columns 2 and 4 of Table 18).

The worst stochastic result is for Ludlow, for which if the

preliminary census figure is correct, the population has begun to

decline. The stochastic model will not predict such a turning point

for the expected value in its present form.

Of particular importance are the regional totals. For the

16 towns considered, the planning consultant is 7.2% high on the regional

total, the stochastic model but 2% high. If the worst result is

subtracted from each total (Ludlow for the stochastic, Springfield for

the consultant's deterministic), these figures reduce to 1.5% and 5.5%

for the stochastic and deterministic totals, respectively.

It is evident that if a method gives consistently high

results, then nothing is gained by increasing the size of the projection

region. A major advantage of the stochastic model is that it appears

less biased than the traditional methods, with a better chance that

errors in particular local area projections will cancel out for a regional

total. This is of key importance for specifying the design capacity of

regional waste treatment and water supply facilities.
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MODEL B

CD

CHICOPEE

SPRINGFIELD

HOLYOKE

WESTFIELD

AMHERST

NORTHAMPTON

HADLEY

PELHAM

PALMER

WARE

MONSON

E . LONGMEADOW

LONGMEADOW

LUDLOW

SOUTH HADLEY

W.SPRINGFIELD

63680

168380

S2300

30240

25400

27820

3860

1000

11510

7910

7670

14840

16120

18620

16680

28300

A

(2)

-2820
(-4.2%)

+6300
(+3.9%)

+2760
(+5.6%)

-860
(-2.8%)

-770
(-2.9%)

+ 100
(+0.3%)

+ 127
(+3.2%)

+64
(+6.8%)

-71
(-0.6%)

-101
(-1.2%)

+ 356
(+4.8%)

+ 1831
(+13.0)

+280
(+1.8%)

+2854
(+18.0%)

-314
(-1.8% )

+45
(+0.2%)

CENSUS

(3)

66500

162078

49434

31102

26166

27726

3733

934

11581

8111

7314

13009

15841

15766

16994

28276

A

C4)

+3550
C+5.3%)

+17170
(+10.5%)

+5100
(+10.3%)

-1130
(-3.6%)

+4900
(+18.8%)

+2960
(+10.6%)

+817
(+22.0%)

-44
(-4.7%)

-1020
(-9.7%)

-600
(-7.4%)

-194
(-2,7%)

+ 1141
(+8.0%)

-1291
(-8.9%)

+ 1884
(+10.7%)

+336
(+1.9%)

+ 1254
(+4.5%)

LPVRPD

(5)

70050

179250

54540

29970

31050

30690

4550

890

10560

7511

7120

14150

14550

17650

17330

29530

i

Table 18 : Comparison of Model B and Planning Consultant
projections with preliminary 1970 census results.
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MODEL E

CHICOPEE

SPRINGFIELD

HOLYOKE

WESTFIELD

AMHERST

NORTHAMPTON

HADLEY

PELHAM

PALMER

WARE

MONSON

E . LONGMEADOW

LUDLOW

• LONGMEADOW

SOUTH HADLEY

W.SPRINGFIELD

75760 -

180860 -

54740 -

32400 -

30040 -

30780 -

4240 -

1140 -

12600 -

8220 -

8120 -

17240 -

20400.-

18200 -

20240 -

30140 -

54600'

155900

49860

28060

20860

24860

3480

880

10600 '

7610

7220

12460

16820

13960

13100

26500

(2).

YES

YES

NO •

YES

YES

YES

YES

YES

YES

YES

YES

YES

NO

YES

YES

YES

CENSUS
• C3)

66500

162078

49434

• 30240

26166

27726

3733

' 934

11581

8111

7314

13009

15766

15841

16994

28276

C4)

YES

' NO

NO

YES

NO

NO

NO

NO

NO

YES

NO

NO

YES

LPVRPD
(5]

65000 -

187300 :-

50000 -

30300 -

24700 -

29900 -

3300 -

880 -

13500 -

16600 -

13000 -

17800 -

29500 -

71900

178500

50000

28500

24000

31500

3100

820

14500

15600

12300

18800

27900

Table 19 : Comparison of stochastic and deterministic projection
ranges for 1970 with preliminary census results.
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For example, the Engineering consultant to the LPVRPD

has recommended that the feasibility of regional waste treatment

facilities be examined for Amherst, Hadley and Pelham. For this region

the stochastic projection is -1.9% low (for the 1970 projection),

the planning consultant 18.5% high. It appears unlikely that such

discrepancies will not also exist for longer range projections. In

recent weeks several newspaper articles have also discussed the possibility

of regional waste treatment facilities in the South Hadley - Holyoke

area. We note that the planning consultants deterministic projection

for both these towns together is high by 5436 for the 1970 projection,

the stochastic projection only 2446 high, again underscoring the need

for an unbiased projection method.

Table 19 compares the projection ranges for the same set of

towns. No range was indicated by the LPVRPC for Palmer, Ware and Monson,

since these towns joined the LPVRPD only last year. The census figure

falls within 14 of 16 stochastic ranges, but within only

4 of 13 deterministic ranges as projected by the planning consultant.

It may be concluded that the stochastic model yields

demonstrably superior results for short-term local area projections.

A shortcoming of the model in its present form is its inability to

predict turning points: further developments will hopefully rectify this

deficiency.

The ranges on Table 19 represent the population projections
by a different consultant to the LPVRPD, and are therefore not always
consistent with those of Table 18
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The Interregional Projection Model

The projections of Model B assume constant mean net

migration rates into the future. It is clear, however, that many

communities will enter declining rate growth phases as the most

advantageous residential sites become developed. A necessary refinement

to extend the short-term projections is to formulate this time-dependence

of growth and migration rates in terms of explanatory variables that

are more readily projected than the growth rates themselves, using

for example the equations of Table 15. Unfortunately the coefficients

of these equations can be obtained only from a cross-section analysis,

as many of the explanatory variables (especially land-use data and

exact information as to the extent of service areas) are available only

for isolated years. The values of the explanatory variables themselves,

however, can be updated as an integral part of the projection process

with relative ease.

A more serious limitation to the constant rate projection

Model is the implied abstraction from the regional entity. The

extent to which a community can expect to grow will depend not only

on its relative locational and service advantages but also on the

overall regional in- and out-migration rates that are dependent on

employment opportunities and the development of the economic base rather

than opportunities for residential expansion.

The interregional model will be applied to the 13 suburban

towns of the LPVRPD, as defined on Figure 13. The flow chart of the



EXPLANATORY
VARIABLES

REGIONAL POPULATION

APPORTIONMENT OF
REGIONAL GROWTH TO
SU8REGIONS

l-th SUB-POPULATION

DECOMPOSITION OF
GROWTH INTO f- t fc
IN-AND OUTMIGRAT10N
RATES

Figure 26 : Flow Chart, interregional projection model C (PROGRAM POPC)
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computerized model is shown on Figure 26 aid should be referenced

during the explanation of individual steps in the following sections.

Regional growth rate. Regional births and deaths are

obtained by summation of births and deaths for the constituent towns,

which are generated as in Models A and B by the first order autoregressive

equations of Table 16. Total regional net migrations are generated as

in Model B by Eq.[ 7.16 ] from which one thus obtains total regional

population at each projection step. The equations of the sector are:

1=1 1=1

=:A* =: X + vts(X) (Eq.[ 7.16 ])

t t
,-, X_

7.17

= q*/ x* . . ........... [ 7.18 ]

t+1 „ ,„
7.18

where the subscript T indicates a figure for the total region, and where

q. = growth increment for town i in period t

4>. = growth rate of town i during period t

Decomposition of regional growth rate. The relationship between

the growth rate of the i-th constituent community, $. relative to the

overall regional growth rate t(> is given by Eq.[ 6.11 ], namely
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* ao n X u 6.11

where a. = empirically determined coefficients

u = random term distributed such that log u *\» N(0,a )

but since the,sum of individual growth increments q. must equal the total

regional growth increment q ,

j^i = 4 17-2° J
the initial estimate of q. from Eq.[ 6.11 ] is adjusted such that

t
~t t qT*: = *; ^ ^ r 7.21 i

Z.*! xi

where (j>. is the corrected estimate of the growth rate. The explanatory

variables X.. are not constants, but will vary through time. Hence

t t 4 t (a 1
0. = <J>T a [ II (X..) j ] u [ 7.22

Explanatory variables. From the aforegoing elaborations it

follows that at each time point of the projection the explanatory

variables require updating. It should again be noted that the equations

discussed in this section are specific to the LPVRPD, and require

re-evaluation on availability of the 1970 census results or on applica-

tion of the interregional model to other planning regions. The 4

variables that determine growth rates (see Eq. [ 6.11 ]) are : Fraction

sewered [FRACSW)9 ratio of single family housing to total residential

area [SFHR), vacant acres CVACAC) and residential density (RESDEN).

Introducing new variables (dropping the i subscripts for clarity),

and the FORTRAN identification as utilized in the
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computer program:

RESAC(J) = total residential area, acres, period J

SFAC(J) = single family housing, acres, period J

DEVA(J) = acres developed for residential location during
period J

XPOP(J) = population at end of period J

GRV(J) = growth increment, period J

GRR(J) = growth rate, period J

F1(J) = fraction of total acres developed accruing to
to single family housing, period J

F2(J) = average lot size, period J

PPH(J) = average persons per household, period J

New values of the explanatory variables are then'obtained at each time-

period by application of the following equations:

GRV(J+1) = f(FRACSEW(J),SFHR(J),VACAC(J),RESDEN(J))

(equation [ 6.11 ])

GRR(J-t-l) = GRV(J+1)*XPOP(J)

DEVA(J+1)= (GRR(J+1)/PPH(J))*F2(J+1)

VACAC(J+1> VACAC(J) - DEVA(J+1)

RESAC(J+1)= RESAC(J) + DEVA(J-H)

RESDEN(J+1) = (XPOP(J)+GRR(J+1))/RESAC(J+1)

SFAC(J+1) = SF(J) + DEVA(J+1)*F1(J+1)

SFHRCJ+1) = SFAC(J+1)/RESAC(J+1)

Values of these variables for the total region required in Eq. [ 6.11 ]

are obtained from appropriate weighted summation. A discussion of the

variable FRACSEW is deferred to Chapter IX. The variables Fl and F2
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are exogenous and must be specified by the decision-maker for the

terminal year; intermediate values are obtained by some interpolation

rule. The sensitivity of the projections to the specification of

these exogenous variables is examined below.

Results. Table 20 compares the Model C projections for the

LPVRPD suburban ring towns with the planning consultant projections.

The regional net migration generator was adjusted for this set of

projections such that the rate for the year 2000 was zero, intermediate

values interpolated linearly. No particular significance can be

attached to the significant discrepancies between the two sets of

projections in view of the deficient data-base upon which the coeffic-

ients of Eq. [6.11] were estimated. Preliminary census results are

available for the following towns: Westfield 31102 (v. 30840),

West Springfield 28276 (v. 28720), Longmeadow 15841 (v. 15520),

Bast Longmeadow 13009 (v. 13480), South Hadley 16994 (v. 15600),

Ludlow 15766 (v. 18860), where the figure in parentheses represent the

Model C projection. A full evaluation must await more complete census

data. Although there is some discrepancy for South Hadley and Ludlow,

we note that for the six towns together, Model C is 2000 high

(= 1.6 percent). Although there can be no immediate judgment on the

accuracy of the longer-term stochastic projections, it is reasonable

to suppose that the deterministic projections will not be more accurate

for longer-term forecasts in view of their demonstrated inferiority

for short-term predictions.
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AGAWAM

EASTHAMPTON

EASTLONGMEADOW

GRAN BY

1IAMPDEN

LONGMEADQW

LUDLOW

SOUTHAMPTON

SOUTii IIADLEY

SOUT1IWIOK

WUSTFIELD

WILBRAHAM

WEST SPRINGFIELD

"1980

26000

14600

18750

8600

4590

16320

21300

3610

22510

9850

34200

13760

34580

LPVRPC

1990

31800

15200

25100

10500

6000

19500

24100

5000

28210

13100

38000

16300

38000

MODEL

1980

25500

15400

16200

5980

3820

19240

24540

2900

18480

7000

40980

13900

37500

C

1990

29900

19280

19300

7380

4700

22700

28420

3500

22480 ;

8740

47540

16400

43640

Table 20 : Model C projections for 1980 and 1990
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Since the prior determination of terminal regional net

migration, average lot size and relative proportion of single family

housing represent judgments of future conditions, it is prudent to

include some measure of uncertainty in their specification. Thus,

for example, the average lot size in the terminal year N is specified

as a fraction of the present lot size (f ) plus or minus some

quantification of the estimated reliability of this judgment. The

program assumes that

F1(N) = Fl(l)*f + v^Cfj)

vt = RND(o,l)

a(f ) = subjective estimate of specification variability

In Chapter IX we shall suggest an improved method of estimating this

particular exogenous variable.

Table 21 illustrates the effect of changes in the

specification of exogenous variables on the 1980 and 1990 projections

for East Longmeadow. Case 1 assumes constant birth and death rates

and zero regional net migration for the total region by 2000. Cases 2

and 3 demonstrate the insensitivity of the projection to decreased

birth rates. Case 4 assumes constant rather than decreasing regional

net migration, and Case 5 assumes that the average lot size of future

single family homes will increase by 20 percent.

By implementing such an interregional projection model on

time-sharing, the planner has at his disposal a tool that permits

immediate quantitative assessment of the potential effectiveness of

policy decisions (for example, increasing minimum lot size in a zoning
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1980

Case 1 16200
(see text)

Case 2 16000
(Mean birthrate p
declining by 20% by the
year 2000, for all 13
towns in regional set)

Case 3 16120
(Mean birthrate for
East Longmeadow down
20% by 2000, other towns
constant)

Case 4 16600
(Constant net regional
migration)

Case 5 16000
(as Case 1 but with
average lot size up
20 % by 2000)

1990

19300

18780

19120

25500

18920

Table 21 : Model C projections for East Longmeadow
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regulation) or the sensitivity of the model to professional judgments

(such as future birth and death rates). This type of simulation

model has long been available to corporate managements as decision-

making aid, and it may be reasoned that if planning and engineering

consultants were also to be held accountable for the accuracy of their

forecasts upon which capital investments are based, population project-

ion would cease to be a process of artistic guesswork to become a

scientific method, utilizing modern quantitative techniques.
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C H A P T E R V I I I

A MODEL OF URBAN GROWTH

Spatial variations of urban population densities. In a

classic paper, Clark (81) postulated that urban population densities

decline exponentially with distance from the city centre. This

relationship may be formulated as

h = h e -br [ 8-1 ]
r o

where h = population density at distance r from the city centre

h = population density at the city centre

b = density gradient

or, in its frequently utilized logarithmic form

log h = log h -br [ 8.2 ]6e r &e o

which is linear in semi-logarithmic coordinates. Subsequently,

numerous studies have confirmed Clark's findings in that a statistic-

ally significant fit to the negative exponential relationship has

been found for all but oriental cities. Indeed, Berry (87) states

See Berry et al. (82) for a comprehensive review of the
literature to 1963. More recent contributions include Newling (83),
Wilkins (84), Wilkins and Shaw (85) and Treadway (86).
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population
density
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Figure 28 : Alternative formulations of urban distance-density
radial profiles.
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"... the negative exponential decline of phenomena
with increasing distance from the city center is
nowhere more apparent than in urban population
densities. Regardless of time or place, this is
the pattern to be found: in some four hundred cases
examined so far there have been no exceptions.
Here, therefore, is a finding of great generality."

Muth (88) examined forty-six U.S. cities for the year 1950 and found

the variability in the density gradient to be strongly dependent on

2
transportation costs. Muth also demonstrated that if certain simple

assumptions were made about the price-distance, demand and
3

production functions, the decline of population density would indeed

be negative exponential. Tanner (89) and Sherratt (90) proposed

independently a revision of Clark's model such that urban population

densities decline exponentially with the square of distance;

2
h = h e ~Cr [ 8.3 ]r o

Newling (91) suggested a quadratic exponential formulation

that recognizes the emergence of a density crater in the central

business district, namely

u 2, , or -cr r Qh = h e L 8 -
r o

Figure 28 shows that both the Newling and Tanner-Sherratt formulations

describe bell-curved density profiles and that their logarithmic

2
As measured by the surrogates miles of local transit system

per unit area and vehicle miles operated per mile of line.
Log linearity of demand and £

exponential price distance relationship.

•7

Log linearity of demand and production functions, negative
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transformations are therefore parabolic, concave downward. Newling

suggests that

"... this downward concavity (of the log transformed
density profile) approximates more closely the observed
density profiles of cities than does the linear curve
generated by the logarithmic transformation of Clark's
negative exponential model." (Newling, op. cit.,
p. 243)

It is quite evident that several functional forms will provide an

adequate statistical fit to observed density profiles. We note,

however, that the Tanner-Sherratt formulation, developed on empirical

grounds, describes the analytical solution to a simple heat diffusion

problem. It is therefore suggested that the process of urban growth

itself can be visualised as a diffusion problem. The particular

density-distance relationship that results is then dependent on the

fundamental assumptions of the diffusion problem, rather than on

empirical criteria of "best-fit".

A physical analogy that appears singularly appropriate is

that of the recharge well (see Figure 29). The solutions that

describe spatial variations in piezometric head in the vicinity of this

recharge well correspond closely to the distance-density relations of

an urbanized area. The differential equations that govern such a

physical problem may be developed by consideration of an infinitesimal

element of aquifer volume within the framework of fundamental

physical laws; in the recharge well problem, the law of mass conserv-

ation and Darcy's Law are applicable. Analogous equations will be

developed in the following section; in place of the aquifer element
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we shall'consider an infinitesimal spatial element of geographic

space.

The dynamic nature of urban systems implies changes in

the constants of Equation [8.4] th.rough time. As Winsborough. (92}

noted,

" ... an increase in population size must be
accommodated by an increase in congestion (or central
density) or a decrease in concentration (density
gradient), or some compensatory change in both."

By modification of Eq. [8.4] to include a time component, changing

density profiles are generated with relative ease. For example,

Newling's formulation

2 2, t ,o mt - nt + (b + gt)r - cr r 0 _ nh = h e ^ o & ' [ 8 .5 ]
r o L J

where h is the density at distance r at time, and m, n, b , g, c

are constants, generates a sequence of curves describing the

emergence of a density crater in the CBD with increasing time (Newling,

loc. cit., p. 249). Again, however, this device is an empirical

artifact. A logically more consistent approach is to view the dynamic

nature of an urban system in terms of the demographic events that

sustain it. For the groundwater well, it is clear that once recharge

stops, the water level in the unconfined aquifer will descend to the

original water table level. In analogy, therefore, the role of in-

migration in sustaining a density gradient-becomes apparent. Out-

migrations to places outside the region under consideration can be
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visualized as leakage through a partly permeable stratum at the base

of the aquifer. Migrations within the sphere of influence of the well

occur in the horizontal plane. The solution techniques of partial

differential equations are sufficiently developed for the dynamic

nature of the problem to be directly incorporated in the diffusion

analogy. Although the unhomogeneous nature of geographic space may

preclude explicit analytical solution of the resulting differential

equations, application of finite difference techniques permits rapid

numerical solution.

Plant and animal ecologists have long utilised diffusion

models to describe the spatial distribution of particular species

whereby the differential form of the postulated growth law (geometric,

logistic, etc.) is augmented by a second order diffusion term, concept-
4

ually the limiting form of a two-dimensional random walk. Most of

these models have been linear, for which solution techniques are

routine. The differential equations that arise in the urban growth

model, however, are non-linear, and we turn now to their derivation.

4
The classic reference is Skellam (93). Watt (94) reviews

more recent work in quantitative ecology.
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Derivation of the Urban Density Equation. Consider an

infinitesimal spatial element of dimensions 6x, 6y (see Figure 30), each

having the dimension of length [L]. Let the residential density of this
2

element be denoted h, with dimensions of persons per unit area [M]/[L] .

The principle of mass conservation for this element requires that the

mass inflow rate equals the sum of the mass outflow rate and the rate of

change of mass storage within this element.

For a given geographical spatial element we may identify four

types of demographic change: births, deaths, inmigrations and outmigrations

In the context of the physical analogy, such events represent changes in

mass. Births and deaths may be visualized as mass inflow and outflow

along the z-axis. Inmigration from adjacent elements and outmigrations

to adjacent elements constitute mass in- and outflows in the horizontal

x-y plane. Such migratory movements, representing changes in residential

location within the region under consideration (intra-regional migrations)
f

are to be differentiated from migrations to and from other regions

outside the immediate sphere of influence (inter-regional migration).

It is hypothesized that all inmigrants from outside enter the region

at the center, whereas inter-regional outmigrants depart from all

locations. The latter may thus be visualized as mass outflow in the z

direction. The birth, death and interregional outmigration rates will

be denoted as $, 6, co respectively.

Consider first the components of the migration velocities

in the x-y plane. Let the component of the migration velocity in the

x-direction at the center of the element be denoted u(x ,y ).
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Figure 30 : Tlie infinitesimal spatial element, cartesian coordinates
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Then the corresponding population mass flux is

[L] h [ 8 . 6 ]

where [L], [T] , and [M] are the corresponding dimensional units,

Population is thus represented by the dimension mass [M] . To find the

value of u through the edge AB at x ± 6x/2 we may use the Taylor series

expansion '

ax

± . . . ± ... [ 8.7 ]

Neglecting higher order terms, the population flux through the AB edge

is approximated by

r , 6x 3[uh),
[u h - -- -- ̂  — -1 <5yL 2 9x J '

and we may write for the mass conservation equation

,
h " T

9(uh)~ " r , 6y 3 (vh) •, e _ , r *+ tv h " 2 3^ 6x + 6 h 5x 6y

inmigration
x-direction

r , fix 3(uh)
[u h - - ~L~-

inmigration
y-direction

r ,[v h - 3fvh) ,> ' - f

outmigration
x-direction

outmigration
y-direction

births

. ,, , , . ,
6x + (6+u) h 6x 6y

deaths
interregional
out mi grants

The corresponding term for the unconfined groundwater
flow problem, that considers the mass flux in an infinitesimal element
of dimensions 6x x <$y x ri is given by

where p is the fluid density and r\ the z-axis dimension of the infinitesimal
element (=free surface height)
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~-6x 5y [ 8.8

change of mass storage in time

Collecting terms,

- 3(uh) . . 3fvh) _ . , „ . ^^^ v 3h p ,—i—- 6x Sy ^—~ fix <5y + ( B-6-w ) 6x 6y h = —- Sx 6y

Expressing the migration velocity components u,v in terms of the Darcy

Law analogy,

u - - K ^ v - - K ^- ( 8.10 ]x dx y dy l J

and substituting these expressions in Eq.[ 8.9 ]

But since K ,K are constants,x y *

K -2, 2 K -2, 2 ~.
x 9 h y d h r o j t - , 1 . 9 "
T ̂ T + 2 —T + ( $'s-u} h = w

Development of applicable boundary conditions is facilitated by

examination of the radially symmetric case for which the dimensions of

the problem are reduced.
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In radial coordinates (0,r) we again consider the conservation of mass

in the infinitesimal element (see Figure 37), which may be written as

AT AT AT
[vr h - 9r

 r ~] Cr - ̂ y) A9 + h 3 A6 Ar r

mass inflow rate

-[v h + ——— 4^](r + =£) A9 - h O+6) r A6 Arr dr z z

-mass outflow rate

r\U

= -^ r Ar A9 [ 8.13 ]

= change of mass storage in time

Collecting terms, and again introducing the Darcy Law analogy for v ,

the velocity component in the r-direction (for radial symmetry v. = 0,
o

A6 =27t)

hence „ ^2, 2 -.2 .,
r | [—— + ̂  ̂ ~] + h (3-6-w) r = -—- r . . . . [ 8.15 ]

and, finally

^-+Fi-+ih W-«-»J=|t- [8.16]
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Figure 31 : The infinitesimal spatial element, radial coordinates
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This equation is again analogous to that obtained for radially

symmetric unconfined flow with the addition of the term in h.

The first boundary condition is h * £ for some r = r ,
C

where £ is some residual rural population density beyond the urbanized

area. The second boundary condition may be obtained by consideration

of the conditions at the point of entry of the inter-regional inmigrants.

As in previous sections, let y be the in-migration rate, and let v be

the centrifugal velocity across a circular perimeter at a distance r

from the centre. Then provided no births or deaths occur within this

perimeter,

v h 2 TT r = y [ 8.17 ]
w w

Dimensionally

v -far h -1—H, t TT rr=r [Tl r=r fT n2 ww L J w LLJ

Expressing ;v in terms of the Darcy Law analogy

- K |5- h 2 TT r = y [ 8.18 ]
dr w

u uhence h -^— = -V— —
3r 2ur Kw

Integrating

h ~ ^-^dr2Trr K ww
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Unfortunately^ we cannot evaluate the constant C, since for r > r , the

relation [ 8.17 ] no longer holds as a result of births, deaths and

inter-regional outmigrations occurring within any perimeter greater than

2Tir . An approximation may be obtained by setting

U = y + ( e-u-fi ) I h. .

and. then for r = r , h =
e

log rtoe e

and hence finally

h = /—- ( y* log r - u* log r ) + ^ . . . [ 8.20 ]W / K T T 6 e e 6 e w L J

which is the required second boundary condition. The analogy to the

recharge well equates the well casing location to the limits of the

Central business district (CBD). In actuality, delimitation of the

CBD may involve some subjective judgements, and the literature of

urban geography is not without controversy on this point ( see e.g.

Brill (95)). A direct evaluation of Eq.[ 8.18 ] by a finite difference

approximation is given in the next section.
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Implications of the model. Equation [8.13] describes spatial

variations of population density in an urban system. In the derivation

of this equation,,an analogy to Darcy's Law was employed. Darcy's Law

relates the flow velocity of a fluid in a porous medium to the head-

loss, and quantifies the proportionality of velocity to the energy

gradient and a constant known as the permeability (or hydraulic

conductivity). In applying Darcy's Law to the urban growth situation,

we postulate that intra-urban migration velocity is proportional to the

gradient in population density. That is, the rate of movement from

one residential location to another is governed by relative spatial

differentials in density. The constant of proportionality (permeability)

which indicates the extent to which the aquifer medium resists the

passage of water, represents the propensity of a particular location to

the passage of intra-urban migrants seeking new (or intensifying

existing) residential location. An intact major physiographic barrier

will inhibit residential location whatever the density gradient. The

physical analogy may indeed be carried one step further. The

permeability, K, of a particular porous medium, may be decomposed

into the product of the intrinsic permeability, K*, which is a

characteristic of the medium itself, and the ratio of the fluid

properties specific weight and dynamic viscosity; the latter being a

function only of the fluid in question, i.e.

Hydraulic permeability has dimensions [L]/[T].
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prevailing views of sociologists. Johnston (96) appears to summarize

the concensus:

"... the majority of in-migrants to a city should first
reside in the inner residential areas where their arrival
will initiate a process of invasion and succession.
Within the suburbs, the greater competition for housing
in inner areas should encourage most movers to proceed
to destinations closer to the urban periphery, so that the
general migratory trend within the city should be away
from the centre."

"... city expansion is largely a function of household
formation, whether by in-migration from elsewhere or by
persons already resident in the city either by marriage
or leaving the parental home to live alone. Much of the
physical expansion takes place through the construction
of new units on the urban periphery. The first
inhabitants of such new dwellings generally are not newly
formed households. Most people who occupy these homes
are already resident in the city, and the new households
generally occupy second-hand dwellings. The result is a
continuous and complex pattern of intra-urban migration."

A limitation is, of course, that patterns of radial invasion-succession

have been most studied in the largest metropolitan areas where racial
Q

or ethnic implications have focused attention. Nevertheless, our
g

hypothesis.is fundamentally in agreement with the Burgess Model.

The asymmetries of the real urban area that distort the ideal con-

centric zonal pattern envisaged by Burgess does not detract from the

overall validity of the postulated driving force mechanism: indeed,

in terms of the diffusion model, the inhomogeneity of permeability

will in itself result in distortions of the ideal density profile.

o
See especially Tauber and Tauber C97) and Ford (9S).

9Schnore (99) gives a lucid exposition of this classic urban
model and its ramifications.
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Empirical analysis of the growth and migration rates in the

Springfield SMSA (see Chapter VI) shows that of all the variables

considered, variations in population density were the most important

single explanatory factor (variable Xq of Table 14). Adams (100)

lends further support to our hypothesis by his findings of strong

directional bias in intra-urban migration. Defining the move angle

as the angle subtended at the CBD between successive residential

locations (see Figure 32), he found in one sample that the most

probable move angle was less than 10 degrees, implying centrifugal

movements to be dominant.

original CBD
residence

move angle
o-

residence
after migration

Figure 32 : Definition of the move angle
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Finite Difference Solution. Since the permeabilities in

the equation

K ^2, 2 K ^2,2 .,
x 8 h i _ y 3 h i , 0 , c , , 9h r Q 17

T + -* T + (3-6-u) h = -rr- [ 8.13
2 3x2 2 9y2 3t

are not constant over an urban region, but vary with the topography,

transportation network etc. , analytical solution for real-world

application is not feasible. The partial derivatives may, however,

be approximated by finite differences, and a solution for h(x,y,t)

obtained by numerical computation on a digital computer.

The non-linearity of Eq.[ 8.13 ] precludes implicit solution

techniques, since the resulting set of simultaneous equations are

quadratic. An explicit solution algorithm, however, is readily

formulated by representing the term 3h/3t by a forward difference, the

2
derivatives in h by central differences, namely

u ih. . - h. .

2, 2

„ 2

At

1 - 2 i - 2(^ , .r - 2(h* .y + (h1-1, r i , j^
,. ^2

t -,2

t 9 t ? t 9
2,2 (h. . ,Y - 2(h. .) -i- (h. .
h _ 1,3-1' *• i,)J *•

2z
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Where h. . is the population density at the point x = i, y = j, at1 > 3
time t. Using these finite differences expression [ 8.13 ] may be

written as

ht+1 - h? . K .. ., (h* .
1,3 i,J _ x(i,j) v i-l, 3

At '2 ,,,2
(Ax)

t 2 t 2 t 2K ,. ., (h: . j - 2(h: .)̂  + (h

2 2
(Ay)2

(e-u-6) h? ......... [ 8.21 ]1 * J

resulting in the explicit solution for h. . (i-e* in terms involving

only h )
t 2 t 2 t 2, , At K ,. ., (h: . .y - 2(h. .y + (h. . .)

h
t+1 x[i ,3) 1-1,3 i>3 1+1.3
1J 2 (Ax)2

t 7 t ? t 2At K ,. ., (h!' . .)̂  - 2(h: .) + Ch: .

2 (Ay)2

+ (1 + At (e-6-u)) h1 ......... [ 8.22 ]
i >3

Richtmeyer and Morton (101) suggested a heuristic approach

to the problem of estimating the stability criterion for such a non-

linear equation. By writing the general non-linear differential

equation

ah r aV
3t 17
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in the form

""xL* *\ —. 1 ' "il*
dh a ,„ i.n~l °h>,~,~ — Tr i ix n n T~""

and comparing this formulation with the corresponding linear equation

it is evident that the "effective" diffusion coefficient for Eq.[ 8.23 ]

may be written as K n h . Substituting this for K in the well-

known expression for the stability criterion of the linear form, one
9

obtains

K n h
 n—— < 0.5

In direct analogy to the two-dimensional linear equation

K 14 + K 1A = <*.
x ax2^ y 3y2 9t

for which the stability criterion for explicit solution is

K At K At

(Ax)2 _ (Ay)2 ~~

9
Adrian and Lo (102) derived this condition for the one-

dimensional non-linear equation for unconfined groundwater flow by
comparison of the finite difference expressions.
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_ ^'specific weight .
uynamic viscosityj

The permeability of the urban growth model may thus be visualized

as the product of a constant physiographic permeability k* and a

mobility factor i|» that may vary in time (and from population to

population).

Dimensional analysis of the Darcy Law Analogy yields

u [L] - K M\ ^ [M]
TTT- - *>y TTTW dx [L]2[L]

2postulating dimensions of [L] /[T] for the mobility factor ty

A ^ *"*

K M\ = K* M P-]*,y [T] [M] "[M] ~[T]

2
hence the intrinsic permeability has dimensions [L] /[M], intuitively

plausible as a measure of saturation density (as acres per person).

The logic of terming the non-constant part of overall permeability as
2

mobility factor is apparent from the dimensions [L] / [T], namely acres

per year; thus representing the potential rate of residential

expansion.

Insofar as the physical groundwater analogy involves the

flow of matter radially from the center, outwards to an undisturbed

periphery, a specific set of behavioural assumptions is implied by

the urban diffusion model. The postulated relationship between density

gradient and migration does not appear in conflict with currently
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one obtains for Eq.[ 8.22 ] the stability condition

2 K h At 2 K h At
—— + ? ? £0.5 [.8.24 ]
(Ax)' (Aŷ

Richtmeyer and Morton (101) have also shown that stability is unaffected

by the lower order terms. By suitable scaling of h, stability is

easily attained, since an approximate prior estimate of the maximum

population density that will occur during the computation is generally

possible.

To evaluate the boundary condition [ 8.18 ] we may express

the derivative as

h - h., r r + Ar
3h w w r „ „_ n
37= I 8-25 ]

Ar

Eq. [ 8.18 ] becomes

h (h - h , ) = - u Ar— [ 8.26 ]r r r + Ar' 0 „ L J

w w w 2 TT r Kw

which is quadratic in h with solution
w

h ... ±/h 2

r +Ar / . r +Ar . IT r. K
h s -^ <—2 S [ 8.27 ]
w 2

For y > 0, it is clear that h > h , and hence the positive termr r +Ar r

w w

of Eq.[ 8.27 ] gives the required value of h . This expression is
w
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we

readily generalised to two dimensions by using average values for

K and r . If (i,j) are the coordinates of the in-migration point,

may replace h by hA and K by KA in Eq.[ 8.27 ], where
w

it it , t , th. , + h. . . + h. . . + h.
ht -ll

K"> /•

8

Figures 33 and 34 show computed density profiles for a

hypothetical urban area of isotropic, homogenous intrinsic permeability.

The effect of an increase in the mobility factor ifj (lower central

density, decrease in density gradient) describes adequately the

phenomenon of urban sprawl. Keeping the intrinsic permeability and

mobility factor constant, population growth alone results in a diminished

density gradient, corresponding to the adaptation to growth by decrease

in concentration described by Winsborough (92).
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Relation of the density gradient to population
growth under constant permeability for a
hypothetical city
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Figure 34 Density gradients under varying permeability
constants for a hypothetical city
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C H A P T E R I X

PROJECTION OF SERVICE AREAS

Current practice. A review of engineering reports shows that

specification of the service area population is generally even more

arbitrary than the population projection itself/ In cases of existing

systems, for which treatment capacity expansion is proposed, the most

common statement is " we have estimated that the sewered population will

be X by 19XX",(or some words to this effect), generally a greater fraction

than presently serviced but less than universal. Where a treatment

facility is planned in conjunction with a new collection system, the

analysis is generally more thorough, with serviced populations based on

probable fractions of saturation densities under existing zoning

regulations. The saturation density method of population projection,

popular in Master Plans of the Fifties, appaers to have fallen from

favour, yielding improbably high results. A more rational basis for

service area projection is desirable.

Application of the diffusion model. The diffusion model of

residential development outlined in the previous chapter has obvious

potential as a projection device in conjunction with the stochastic

simulation population projection of Chapter VII, since the later

yields the birth, death and migration rates required as the driving force

for the diffusion model.. An initial condition can be obtained from

a land-use study or census base maps (or even aerial photographic

surveys) that indicate existing locations of residential land use.
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The basis for inclusion of a particular cell into the

water or sewer service area is the relationship between prevailing

residential density and distance from the existing area. Analytical

formulation of a decision rule to include or exclude a particular

cell is generally quite complex. Downing (103) has explored this

approach using some available treatment plant cost functions and

evaluating the relationships between incremental costs at the

treatment plant, incremental transportation costs to the plant, and

the estimated benefits of sewer access to the individual householder.

Although the distance-density trade-offs between sewers and septic

tanks could be identified in a general way, local conditions induce

considerable variability to such estimates. An individual economic

analysis for each and every cell at all time points during numerical

computations would not only require inordinate amounts of computer

time but demand that the marginal costs be known. At present the

availability of sufficiently accurate cost information for a particular

treatment plant is improbable.

Empirical expedients are, fortunately, sufficient. The

extent of the present service areas is generally known, and an

examination of land use, zoning and topographic maps will yield an.

estimate of the marginal residential density at the existing

peripheral limits of the service area. The tedium of this operation

is eliminated by computerization. By examination of the distances to

the service area of cells not presently serviced, an appropriate
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density-distance decision rule may be specified. At each time

point during the numerical solution of the diffusion equations,

cells in the vicinity of the current service area are evaluated on

the foregoing basis.

The computer model. Although the numerical solution of

Eq. [8.13] by the finite difference algorithm [8.21] can be compactly

programmed, the numerous subsidiary computations required to -

translate the mathematical abstraction into a scale model of the

real world make the complete program somewhat complicated. The links

between individual subroutines are indicated on Figure 35, and the

computer model is best described on a routine fay routine basis using

this Figure as an outline.

Subroutine INPUT1 converts a map of physiographic character-

istics into a basic matrix of intrinsic permeability. State forest,

wetlands and conservation areas, major rivers, lakes and topographical

obstacles are assigned zero permeability, since no residential growth

will occur in such cells. The maximum grid size is presently 40 x 40.

Cells outside the immediate problem boundary [few communities are

rectangular) are also assigned zero permeability. Cells adjacent to

lakes are automatically assigned high permeabilities, as are cells

along the transportation network. Permeabilities along the latter are

directional: a north-south road, for example, receives a higher

Y-perraeability than X-permeability. The input-physiographic map also

contains information on the existing residential land use, as obtained
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Figure 35 : Flow chart, residential growth simulation model (PROGRAM SIMGR)
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from the Land Use Study undertaken for the Lower Pioneer Valley

Regional Planning Commission. This information is in the form of a

trichotomous: High-Medium-Low intensity classification. The

initial condition of population density is derived from this

information. A second input map serves to specify the existing

water and sewer service areas. Since there may be more than one

center (recharge points) in a given problem, each sewer and water

serviced cell is assigned to the center of closest proximity. This

computation is executed in subroutine DISTCP. In the sample

problem, three centers are specified (Amherst, Granby, Belchertown).

Subroutine ALLOC allocates population to cells such that

consistency with existing service area populations is attained. Routine

XDPROB specifies the rules (e.g. negative exponential decline from the

center) by which additional service area population is allocated.

Hence the need to associate each serviced cell to its nearest centre.

Population is allocated outside the service area by drawings from

uniform random number tables: a cell requires some number of hits that

is inversely related to its intrinsic permeability before a household

is allocated to it. In this fashion, a rural household is more

likely to be allocated to a roadside or lakeside location than to an

inaccessible cell. This allocation process is illustrated by

Table 22.



Water Service Area

Sewer Service Area

Outside Service Areas

Actual

13100

10300

10770

Allocated
by INPUT1
as per land
use map

7520

4320

5888

Allocated by ALLOC

neg.exp.

5580

5980

0

uniform
.random

0

0

4882
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Table 22 : Allocation of residential population in the initial
condition.

Subroutine EVALDEN computes the mean density (and lower

moments) of water and sewer serviced cells, and SERVEV evaluates the

serviced population. This latter function is not trivial, since

population density is recorded in one array and the instantaneous

spatial location of the water and sewer service areas identified by

an integer in a second array (0 = Unserviced, 1 = Water serviced,

2 = Sewer serviced).

Subroutine MARGDEN then computes the existing marginal

density at the periphery of the service areas, together with the

associated lower moments. These marginal densities serve as the

basis for the decision-rule for inclusion or exclusion of cells

adjacent to the currently existing service area as the iteration

proceeds. The average equilibrium radius is also evaluated at this

point, being equated in rough, approximation to the periphery of the

water service area.

INPUT2 processes the output from the population projection

program POPPRJ (see Chapter Vll). Subroutine CNTRST allows further
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manipulation of the basic intrinsic permeability matrices. These

are specified initially on an integer scale 0-9.

COMPUTE contains the actual core algorithm, the numerical

solution of th.e finite difference expressions. The problem is

automatically scaled to ensure stability. The call to CRRT corrects

for truncation error at each iteration. This correction is possible

since the total in the system is known from the population

projection. The correction at each, iteration is in the order of

0.01-1%, dependent on the distance and time scales involved. Though

small, they are cumulative, resulting in noticeable losses for

uncorrected computations.

A further source of loss is the presence of zero permeability

cells (and hence zero population density) in the body of the problem

region. In actuality, at such points the density gradient is undefined

(e.g. at a lakeside), and the use of "image" points is a convenient

device to attain zero gradient. Suppose the location (i, j + 1) has

zero permeability. Then for evaluation of h. ., the term h. -.in
* J-3 i, 3 + 1

the expression [8.21] is zero. This is replaced by h. . in evaluating1» j
[8.21], The call to VARCO evaluates the variable coefficients at each

time-point (instantaneous birth, death and migration rates).

PLOTM is the plotting routine, called at 5-year intervals.

A summary table (Routine TABLE) is printed out on completion of the

computations.

The output of a sample run is reproduced on the following

pages, showing the projected expansion of service areas for the north-
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Figure- 36A : Service area projection, Northeastern periphery of the LPVRPD
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SERVICE AREA MAP 1980 RESIDENTIAL LAND USE INTENSITY MAP 1980
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Figure 36B : Service area projection, northeastern periphery of the LPVRPD
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SERVICE AREA MAP 1990. RESIDENTIAL LAND USE INTENSITY MAP 1990
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Figure 36C : Service area projection, northeastern periphery of the LPVRPD
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eastern part of the Lower Pioneer Valley Regional Planning District.

The birth, death and migration rates were obtained from the

projection Model B of Chapter VII.

So far we have not considered actual numerical values of

intrinsic permeability or the mobility factor. The 1990 projections

of Figure 37 for East Longmeadow will illustrate the sensitivity of

the model to particular numerical values.

The basic matrix of intrinsic permeability is specified

on an integer scale 0-9, and multiplied by a factor TT to obtain a

matrix of greater contrast. Thus the projection of Figure 37A, for

example, used TF= 3-0 and a mobility factor of 0.2 to give an

effective maximum permeability of

9 x 3.0 x 0.2 . 13.5 = K

To ensure stability, this particular problem was automatically

-4scaled down by 10 (equivalent to specifying population in tens of

thousands) .

The effect of allowing changes in the peripheral density

that determine whether or not a cell will be accessed by the service

area is also illustrated. The present marginal density for sewer

and water access is denoted by h(s), h(w) respectively, and the

marginal density in the terminal year given by9h(s), 9 h(w) where
j W

9 < 1. Figure 37A assumes 0,9 =1 (no change) whereas Figure 37B
^~ . W S

takes 6,6 = 0.65, on the assumption that sewers and water lines
W o
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SERVICE AREA MAP 1990 178
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*****************************************
* *
* MOBILITY FACTOR = 0.2 *
* PI * 3.0 *
* THETA(S) =1.0 *
* THETA(W) =1.0 *
* XSCALE = 10E-04 *
* *
*****************************************
* *
* X EXISTING WATER SERVICE AREA *
* Y EXISTING SEWER SERVICE AREA *
* W WATER SERVICE AREA ADDITIONS *
* S SEWER SERVICE AREA ADDITIONS *
* TOTAL POPULATION 19300 *
* SEWERED POPULATION 13204 *
* POP.IN WATER SERVICE AREA 16563 *
* FRAC.SEWERED 0.68 *
* FRAC.IN WATER SERVICE AREA 0.86 *
* *
*****************************************

Figure 37A : Service area projection
East Longmeadow
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SERVICE AREA MAP 1990 . . "
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* THETA(S) = 0.66 *
* THETA(W) = 0.66 *
* XSCALE = 10E-04 *
* . . . . . . . . *
*****************************************
* *
* X EXISTING WATER SERVICE AREA *
* Y EXISTING SEWER SERVICE AREA *
* W WATER SERVICE AREA ADDITIONS *
* S SEWER.SERVCIE AREA ADDITIONS *
* TOTAL POPULATION 19300 *
* SEWERED POPULATION 13428 *
* POP.IN WATER SERVICE AREA 16744 *
* FRAC SEWERED 0.70 • *
* FRAC.IN WATER SERVICE AREA 0.87 *
* , *
*****************************************

Figure 37B : Service area projection
East Longmeadow
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* MOBILITY FACTOR = 0.1 *
* PI = 3.0 *
* THETA(S) = 0.66 *
* THETA(W) = 0.66 *
* XSCALE = loE-04 *
* *
*****************************************
* *
* EXISTING WATER SERVICE AREA X . *
* Y EXISTING SEWER SERVICE AREA *
* W WATER SERVICE AREA ADDITIONS *
* S SEWER SERVICE AREA ADDITIONS *
* TOTAL POPULATION 19300 *
* SEWERED POPULATION 12933 *
* POPULATION IN WATER SERVICE 16642 *
* FRAC SEWERED . 0.67 *
* FRAC. IN WATER SERVICE AREA 0.86 *
* *
*****************************************

Figure 37C : Service Area projection
East Longmeadow
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Figure 37D : Service area projection
East Longmeadow
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will be extended to areas of lower density than at present.

While the estimates are quite comparable to those of the

planning consultant, the use of the simulation model does allow

immediate quantitative analysis of particular assumptions, which

cannot be considered explicitly in a traditional estimate.

Further developments. In the interregional projection model

of Chapter VII the average lot size was required during each time period

of the projection. By including an array of minimum lot sizes, as

rquired by zoning regulations, the average lot size may be obtained from

the residential location simulation model by comparison of cell

occupancy with the corresponding matrix of lot sizes. Since the fraction

sewered at each time point is also required for the inter-regional

projection, a desirable development would be the integration of the two

programs to run simultaneously. This in turn demands a much larger grid

than the present 40 x 40 maximum, and thus the programs will require major

revision to allow intermediate storage of matrices on tape. However, a

simple iterative scheme was found adequate for the East Longmeadow

example; the projection program POPC assumed a set of values for FRACSEW,

the output population projections then inserted into the residential

development simulation program SIMGR; a second run of POPC using the

second estimate of FRACSEW from SIMGR; satisfactory convergence was

obtained in two or three runs.



183

. Evaluation of the model. Despite the many assumptions and

approximations that are required to establish a working model, the

results appear realistic. The fact that the predicted extent of

service areas may be at variance with forecasts obtained by traditional

methods does not invalidate the results, since neither can be judged

against an absolute standard.

The model does clearly not eliminate any detailed engineering

study of proposed service area extensions. However, the results would

appear excellent for the purpose of forecasting total flows for the

purpose of planning treatment plant facilities and an evaluation of the

trade-offs between the scale economies of large regional plants and the

costs of regional interceptors. A deterrent to enlarging the scale for

detailed projection is the difficulty in specifying permeabilities;

the model is thus of doubtful utility for detailed estimates of

collection system network requirements. A further limitation of the

model is its restricted applicability to the urban periphery. In

sparsely settled rural areas assumed centres of inmigration are ill-

defined, and the concept of density gradients conceptually vague.

Nevertheless, since most treatment facilities of the coming decade are

to be built in dynamic suburban areas, this qualification is not

serious in an assessment of application potential.

A significant advantage of the mathematical model over

traditional expedients is the ability to study the effect of

particular assumptions. For example, the effect of decreasing the
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requisite marginal density for service inclusion may be evaluated by

changing a single input parameter. But above all else, the forecast

is made on a rational-quantitative basis rather than by intuition and

guesswork.
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C.H A P T E R X
t . C< ! - ' , • . - - • • '

' • ' • ' • ' ' CONCLUSIONS AND RECOMMENDATIONS

j ..

Conclusions. The principal conclusions to the aforegoing

study may be summarized as follows:

1. The response surface optimization.technique is an

excellent tool for the resolution of computational problems encountered

in the decomposition of net migration .into in- and out-migration streams.

The estimation bias resulting from the stochastic nature of migration

and vital rates and the errors in intercensal population estimates may

be eliminated for two-region systems by a smoothing scheme for which

optimum results are defined by a response surface minimum.

2. The first-order autoregressive stochastic process is a

satisfactory model for the quantification of random fluctuations

in birth and death rates of local areas. The relationships between

the degree of serial correlation and the magnitude of the random

fluctuations and the size of the population were found to be statistically

significant.

3. Stochastic simulation population projections are demonstrably

superior for short-term forecasts to traditional deterministic methods

of population projection. Stochastic projections were found to be

significantly better for most of the towns in the study region for which

preliminary 1970 Census results were available at the time of writing, and

in no case was the deterministic forecast significantly better.

4. Stochastic simulation projections permit an objective
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and statistically well-defined measure of projection variability

that may be directly incorporated in mpdern treatment plant design

procedures. The traditional expedients of specifying "high" and "low"

projections are not indicative of actual variability,

5. The model of residential location based on the analogy

to a mathematical model of the recharge well was found to be a good

representation of the spatial variations in urban population densities,

and may be used in an objective assessment of the future extent of water

and sewer service areas.

6. The computerized models developed in the course of this

study provide a rational basis for the specification of the input

to the modern optimization algorithms utilized in the planning pf

regional waste treatment facilities.
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Recommendations, On the basis of,this study the following

recommendations are directed to the participants in the regional planning

process:

1. It is recommended that the economics of time-sharing

computer facilities be examined with a view to implementation of

computerized planning models.

2. It is recommended that stochastic simulation models

be examined as an alternative to traditional methods of population

projection.

3. It is recommended that the environmental engineering

profession re-evaluate the subordinate roles to which population projection

and service area prediction have traditionally been assigned. In particular,

population projections need be viewed in the framework of an interregional

stochastic process rather than as a qualitative judgement made in isolation

of demographic and socio-economic reality.

In addition to the above recommendations, this study suggests

the following research priorities:

1. To complete the objective input specification to the

optimization algorithms utilized in the planning of regional waste

treatment facilities the relationships between serviced population and

the stream vector quantity and quality parameters require detailed study.

In particular, the traditional loading parameters (for example pounds of

BOD and SS per capita per day), institutionalized in State Standards for

sewage treatment plant design, require reevaluation in the light of

modern conditions.
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2. Establish additional computational experience with

stochastic simulation population projections and evaluate their

performance on a systematic basis on availability of the 1970 Census

results.

3. Examine the feasibility of extending the response surface

algorithm for the decomposition of migration streams to multi-region

systems using additional symptomatic indicators of intercensal

population.

4. Extend the service area prediction model to include

explicit consideration of zoning regulations. This will probably

require mathematical formulation of partially confined aquifer

systems as a basis for further development of the physical analogy.
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APPENDIX A : STATISTICAL TESTS

2
Hotelling's T Statistic. To test the hypothesis y = p

on the basis of a p-dimensional sample of size N, from a universe

2
distributed as N ( y , Z ) , the T statistic, defined as

T2 = N(x - lV1 [x - y) ........ [ a.l ]

may be utilized, where S is the sample covariance matrix, and x the

vector of sample means. The critical region is defined for values of

2 , (N-l ) p c _ ̂ 2

2
T for which

T
— N - p p,N-p,a cr ........ [ a. 2 ]

where F „ is the F-distribution with p, N-p degrees of freedom at

significance level a.

To test for the equality of 2 p-dimensional vectors of

sample means, i.e. to test the hypothesis un = u_, based on N, and N_J i ^ 1 2 1 2

observations, respectively, a pooled estimate of the sample covariance

matrix is first defined as

1
S = 4 f H ^ 1 "^ ^ 4- /"M — l l Q I - r ^ " ^

iV i n ^ Ll-l '-i J-J JT T <,''•-> J-J "^ J " • • L «•• O1 1 z ^

where S and S are the sample covariance matrices. Then if y and y

are the sample means

2 N1N2 T -1
T = - S ^ - a.4
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2
which is distributed as T with N + N - 2 degrees of freedom.

2
The critical region is defined for values of T greater than

T2 <N1 + N2 - 2> „
cr (N + N2 - p - 1) p,N1-KN2-p-l ,a . . . . [ a.5 ]

Multivariate Equality of Variance-Covariance Matrices. To

test for the equality of a set of variance-covariance matrices, let

S be the estimated covariance matrix of the k-th sample, k = l > 2 , . . . , K J

each based on n, observational p-tuples. Defining the pooled estimate

of variance, S, based on all Nn + N + ... + N = N observations, such
1 Z K

that s.. e S are given by

s i j ^j^V- " s i j t a - 6 1

Anderson (105) has shown that the expression

exp(N
-2 p log [ a.7 ]

( S exp{(N-K)/2})

is distributed as chi-square with p(p+l) (K-l ) degrees of freedom, and where

p is defined as

K 2

n rV 1 1 1 2p +3p-l , r « o i
p = [1 " { -
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APPENDIX B : ESTIMATION BY MINIMUM ABSOLUTE DEVIATIONS (MAD)

Given the regression problem

y = W Y u* [ b.l ]

(n x 1) (n x k)(k x 1) Cn x 1)

the minimum absolute deviations estimator seeks the vector y which

minimizes the expression*

'I \y - wy| = I lu*!
subject to

y = Wy + u

Y I'D [ b.2 ]

Writing the u as the difference of two non-negative variables z and

t - •v
r i 11 r i t 11
L \u \ = l\v - 2 I

and thus the constraint set may be written

y = W + f I , -I i T v l [ b.3 ]

and hence to estimate any particular row of the k x k interregional

growth operator for an n-year intercensal record we may use the

simplex algorithm on the initial tableau

Y 2 v

y W I -I [ b.4 ]
' n n v J

this study.
The derivation follows Rogers (56) but in the notation of
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APPENDIX C

PROGRAM LIBRARY DESCRIPTION AND MISCELLANEOUS RAW DATA LISTINGS

Copies of the source listings for all programs mentioned

in this study are available from the writer, c/o Environmental

Engineering, Department of Civil Engineering, University of Massachusetts,

Amherst, Mass.01002, USA. All programs were written in CDC3600-FORTRAN,

and tested and run on the CDC 3600 Computer of the University of

Massachusetts Research Computing Center.

MCM. Program for the Monte Carlo Study of the Rogers Model

with additive random errors. Summary flow chart is given on Figure 5.

Sample output for typical runs is given on Tables Cl - C3.

MCMX. Program for the Monte Carlo Study of the Rogers Model

with random variable growth operator elements (Chapter IV). Sample

output is given on Table C4.

WALD. Program for estimating interregional growth operators

by the modification to Wald's Method developed in Chapter III.

GRADP. Program for the decomposition of net migration into

in- and out migration by the response surface algorithm developed in

Chapter V. A summary flow chart is given on Figure 15.

POPB. Stochastic simulation population projection program

using first-order autoregressive processes to generate birth, death

and migration rates. Sample output is given on Figures 22 - 25, and

a summary flow chart on Figure 19
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POPC. Stochastic simulation population projection program

for interregional systems. Will require extensive modification for

application to regions other than the LPVRPD in view of the dependence

of the projection on a set of explanatory variables that may vary from

place to place; Summary flowchart is given on Figure 26 and output

for one particular town in an multi-region set on Figure 27.

SIMGR. Residential location simulation program developed

in Chapter IX. Requires 32K of memory core for a 40 x 40 grid. Output

is given on Figures 36 and 37, and a summary flowchart on Figure 35.
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SYSTEM IDENTIFICATION

r =
1.0044 0.0024

0.0132 1.0128
R =20:1 N=25. n=8
s

ULS MAD
*

T =
1.0044 0.0024.

0.0107 1.0130̂
_

. , 1 1.0039 0.0025

W 0.0132 1.0128
l_ —

0 =1X1U
u

r =i

"r =

1.0046 0.0024

_0.0140 1.0127_

1.0070 0.0022~

0.0146 1.0129
o =lxlO"3u

r =i

r" =
-2

1.0058 0.0029*

-0.0067 1.0146

~ 0.9630 0.0062*

jO.0485 1.0168

UWWf I

W

uwW 11

W

1.0043 0.0024

0.0188 1.0123

"0.9942 0.0034

0.1714- 0.9985
'""

"1.0036 0.0025"

0.1510 1.0000

0.8169 0.0199

1.1379 0.9083
a =lxlo
u

r1
0.9882 0.0039

_0.6243 0.9573_
uw\p/ll

"0.8968 0.0123

1.4644. 0.8799

Table Cl : Monte Carlo Study, Rogers Model with additive random
errors. Comparison of ULS and MAD growth operator
estimates for an 8-year record, N=25,

Abbreviations used in Appendix Tables : UW = unweighted estimator
W = weighted estimator
ULS= unrestricted least squares
MAD= minimum absolute deviations
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SYSTEM IDENTIFICATION .

r =
1.0200 0.0050

0.0120 1.0650
R =20:1 N=25 n=25
s

. ULS MAD.

A

r =
1.0200 0.0050

0.0119 1.0650 W
1.0197 0.0050

0.0103 1.0655
a =ixiuu

A
T» ~~

ft

r =
-3

a =1x10u *_
r -

A

r" =
-2 •

o =1x10
u _£_

f* _

"l.0200 0.0049

0.0120 1.0640

"l.019S 0.0051

_0.0144 1.0643

~1.0202 0.0049"

_0.0110 1.0652

~1.0185 0.0053"

-0.0084 1.0710

"1.0069 0.0083~

_0.0210 1.0630.

uw

WIf

uw*J1I

W

uw

1.0200 0-0050

0.0120 1.0649

"1.0195 o.oosf
0.0144 1.0643

"1.0188 0.0053"

0.0130 1.0647

"0.9727 0.0194"

0.0868 1.0452_

"0.9938 0.0119"

0.0721 1.0479

Table C2 : Monte Carlo Study, Rogers Model with additive random
errors. Comparison of ULS and MAD growth operator
estimates for a 15-year record, N=25
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SYSTEM IDENTIFICATION

r =

au

IxlO"4

1x10" 3

IxlO"2

1.0056 0.0030

0.0056 1.0193
R =20:1 N* 50 n=10s

ULS MAD

o _s^cn =
0.0011 0.0001

0.2304 0.0017

I 1
2 -s (r) =

o A

s (r)

o A

s (f) =

O A

s (f) =

2 ,-p-. _

0.0015 0.0001

0.1354 0.0016

0.12 0.0001

24.32 0.20

_
0.11 0.0009

24.32 0.20

19.42 0.15

1524.0 12.6
_

13.4. 0.10

1670. 13.5 ,

W

UW

w

uw

w

uw

0.0270 0.0002

0.9480 0.0008

— — i
0.0027 0.0002

0.1633 0.0014

0.19 0.0016

4.34 0.36

~0.12 0.0009"

4 . 34 0 . 36

27.6 0.22

501.0 4.40

.„

7.27 0.05

1374.0 11.06

Table C3 : Monte Carlo Study, Rogers Model with additive random
errors. Comparison of standard deviation of estimated
growth operators for various estimation modes.
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SYSTEM IDENTIFICATION

1.0056 0.0030

0.0056 1.0193
R = 2 0 : 1 N=100 n=10 p=0

W UW

=lxlo"2 F =u

a =5xlO"2 F =u

a =lxlO"1 r =u

1,0062

0,0055

1.0058

0,0056

0.9988

0,0048

0.0029

1.0193

0.0029

1.0193

0.0036

1.0193

1.0058 0.0030

0.0055 1.0193

1.0043 0.0031

0.0067 1.0193
— -*

1.0064 0.0030

0.0046 1.0193

a =2xlO~1 T =
u

a =3xlO"1 r =u

1.0077

-0.0011

0.9711

-0.0067

0.0029

1.0199

0.0059

1.0200

0.9989 0.0036

0.0136 1.0186

0.9853 0.0047

0.0047 1.0194

Table C4 : Monte Carlo Study, Rogers Model with random variable
operator elements, a = standard deviation of the
growth operator elements expressed as a fraction of
the mean value of that element.
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Springfield
Hoi yoke
Chi cope e

Agawam
Amherst
Bel chert own
Easthampton
East Longmeadov
Granby
Longmeadow
Ludlow
Northampton
South Hadley
Southwick
West ^ringfield
West fie Id
Wilbraham

Blandford
Chester
Granville
Hadley
Hampden
Huntington
Middlefield
Montgomery
Pelham
Russel
Southampton
Tolland
Westhampton

Hampden County
Massachusetts

B I R T H S

A

iJ

23.3
21.9
24.6

19.4
19.9
13.4
19.9
17.8
23.8
12.2
20.9
17.5
22.3
23.8
21.6
21.2
17.9

20.6
18.6
19.9
21.1
17.0
20.7
19.7
19.1
19.2
22.3
17.6
10.7
24.3

22.1
20.9

A

pl

0.62*
0.72*
0.96*

0.67*
0.57*
0.35*
0.69*
0.52*
0.47*
0.001
0.67*
0.72*
0.76*
0.77*
0.61*
0.7S*
0.25

0.41*
-0.07

0.38*
0.25

.0 .22
0.21

-0.04
0.08
0.04

-0,05
0.19

-0.1
0.14

0.73*
0.96*

A

P2

0.08
-0.02
-0.2

-0.12
0.04
0.16

-0.07
0.007
0.26
0.26

-0.02
-0.001
0.01

-0.10
0.11

-0.16
-0.05

0.08
0.40*

-0.04
0.08
0.13
0.04
0.08

-0.29
0.11
0.40*

-0.11
0.17
0.04

-0.01
-0.22

000.

1.47
1.80
1.76

2.0
2.6
2.4
2.3
3.00
4.43
1.67
2.2
1.35
2.0
3.3
2.02
1.76
3.16

4.98
4.46
6.7
3.9
4.7
5.1
8.1
8.6
5.9
4.5
3.2

10.7
7.3

1.73
1.16

D E A T H S

I

9.7
12.95
7.9

7.3
8.3
7.5
9.6
7.5
6.8
7.5
7.3

10.2
8.3
7.7
8.8

10.4
7.4

11.3
12.7
12.2
8.5
8.3

13.1
10.1
7.1
9.7

10.2
8.3
9.7
9.9

10.21
10.9

A

pl

0.48
0.34*
0.53*

0.22
0.19
0.24

-0.08
0.34
0.22

-0.17
0.10
0.32
0.13
0.56*

-0.08
-0.14

0.36*

0.03
0.21
0.39*
0.31
0.17

-0.15
0.06

-O.OS
0.02

-0.11
0.16
0.10

-0.08

0.30*
0.49*

A

P2

0.60
0.26
0.16

0.38*
0.53*
0.17
0.07
0.39
0.11

-0.17
0.22

-0.23
0.27
0.002

-0.10
-0.37*

0.03

-0.4*
0.11
0.16
0.001
0.22

-0.35*
0.13

-0.08
0.29

-0.02
0. 0*
0.13
0.009

0.067
0.22

a(5)

0.41
0.66
0.42

1.08
1.44
1.39
1.04
1.39
2.4
1.41
0.77
0.81
1.1
2.29
0.76
0.76
1.47

4.22
3.9
3.6
2.3
3.27
2.6
5.6
7.08
4.4
2.7
2.9

11.2
5.7

0.32
0.30

Table C5 : Second-order autoregressive parameters for birth and death
rates for communities in the LPVRPD over the interval 1940-1965
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APPENDIX D

OUTLINE OF TRADITIONAL POPULATION PROJECTION METHODS

Least squares method. A least squares regression line is

fitted to the historical record and extrapolated into the future.

Geometric. A least squares fit to the logarithm of

historical values is computed and extrapolated to give the logarithm

of future population.

Step-down. Assumes that trends in growth rates relative to

larger regions remain constant. Least squares regression lines are

generally employed -to extrapolate the fraction of population in the

study area.

Cohort survival. Based on the analysis of fertility,

mortality and age structure (see Chapter VII). Excellent for closed

population systems, but requires estimates of the numbers and age

distribution of net migrants to be added at each time-step of the

projection for open (local area) population systems.

The best review of traditional methods is contained in

Isard (104), p. 1-80. McJunkin (18) surveys the treatment of the.

topic in the environmental engineering textbooks.
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